Ren YiLin, Carretero Oscar A, Garvin Jeffrey L
Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA.
Hypertension. 2002 Feb;39(2 Pt 2):624-8. doi: 10.1161/hy0202.103299.
The macula densa detects changes in NaCl concentration in tubular fluid and transmits a feedback signal, known as tubuloglomerular feedback (TGF), which helps to control glomerular afferent arteriole resistance. We and other investigators have reported that synthesis of NO in the macula densa inhibits TGF. NO can be scavenged by superoxide (O(-)(2)) to form peroxynitrite, effectively reducing the bioavailability of NO; there is growing evidence that O(-)(2) regulates vascular tone in the kidney. We hypothesized that O(-)(2) produced in the macula densa enhances TGF and this effect acts only in an autocrine manner within the cells of the macula densa. Afferent arterioles and attached macula densas from Sprague-Dawley rats were simultaneously microperfused in vitro and TGF response examined before and after perfusing the tubular lumen, bath, or vascular lumen with a superoxide scavenger. The macula densa was perfused with solutions containing either 5 mmol/L Na(+) and 3 mmol/L Cl(-) (low NaCl) or 80 mmol/L Na(+) and 77 mmol/L Cl(-) (high NaCl) while keeping pressure in the afferent arteriole constant at 60 mm Hg. When 10(-4) M Tempol, a stable membrane-permeant superoxide dismutase (SOD) mimetic, was added to the tubular lumen, it inhibited TGF by 56% (before Tempol: TGF, 3.2 +/- 0.3 microm; after Tempol: TGF, 1.4 +/- 0.2 microm; n=6; P<0.05, control versus Tempol). Adding Tempol to the bath inhibited TGF by 48% (before Tempol: TGF, 2.5 +/- 0.25 microm; after Tempol: TGF, 1.3 +/- 0.18 microm; n=6; P<0.05). However, adding Tempol to the vessel lumen did not change TGF response significantly (before Tempol: TGF, 2.7 +/- 0.37 microm; after Tempol: TGF, 3.2 +/- 0.25 microm; n=7; P=0.25). When 300 U/mL of the enzyme SOD, which is not membrane-permeant, was added to either the tubular lumen or bath, it had no effect on TGF response. Finally, to determine whether the effect of O(-)(2) in the macula densa is mediated by its scavenging of NO, 7-nitroindazole (7-NI) was added to the macula densa to inhibit neuronal nitric oxide synthase (nNOS). In the presence of 7-NI, Tempol had no effect (7-NI only: TGF, 3.0 +/- 0.4 microm; 7-NI plus Tempol: TGF, 2.8 +/- 0.5 microm; n=6; P=0.343). Our findings suggest that (1) reducing O(-)(2) increases the bioavailability of NO, which inhibits TGF, (2) both O(-)(2) and NO act within the macula densa, and (3) O(-)(2) appears to have no effect on its own.
致密斑可检测肾小管液中氯化钠浓度的变化,并传递一种称为管球反馈(TGF)的反馈信号,该信号有助于控制肾小球入球小动脉阻力。我们和其他研究人员报告称,致密斑中一氧化氮(NO)的合成会抑制TGF。超氧化物(O(-)(2))可清除NO以形成过氧亚硝酸盐,从而有效降低NO的生物利用度;越来越多的证据表明,O(-)(2)可调节肾脏中的血管张力。我们推测,致密斑中产生的O(-)(2)会增强TGF,且这种作用仅在致密斑细胞内以自分泌方式发挥作用。对来自Sprague-Dawley大鼠的入球小动脉和附着的致密斑进行体外同步微量灌注,并在用超氧化物清除剂灌注肾小管腔、浴槽或血管腔之前和之后检测TGF反应。用含有5 mmol/L Na(+)和3 mmol/L Cl(-)(低氯化钠)或80 mmol/L Na(+)和77 mmol/L Cl(-)(高氯化钠)的溶液灌注致密斑,同时将入球小动脉中的压力保持在60 mmHg恒定。当将10(-4) M Tempol(一种稳定的可透过细胞膜的超氧化物歧化酶(SOD)模拟物)添加到肾小管腔中时,它可使TGF降低56%(添加Tempol之前:TGF为3.2±0.3微米;添加Tempol之后:TGF为1.4±0.2微米;n = 6;P<0.05,对照组与Tempol组比较)。将Tempol添加到浴槽中可使TGF降低48%(添加Tempol之前:TGF为2.5±0.25微米;添加Tempol之后:TGF为1.3±0.18微米;n = 6;P<0.05)。然而,将Tempol添加到血管腔中并未显著改变TGF反应(添加Tempol之前:TGF为2.7±0.37微米;添加Tempol之后:TGF为3.2±0.25微米;n = 7;P = 0.25)。当将300 U/mL不能透过细胞膜的超氧化物歧化酶添加到肾小管腔或浴槽中时,它对TGF反应没有影响。最后,为了确定致密斑中O(-)(2)的作用是否由其对NO的清除介导,将7-硝基吲唑(7-NI)添加到致密斑中以抑制神经元型一氧化氮合酶(nNOS)。在存在7-NI的情况下,Tempol没有作用(仅7-NI:TGF为3.0±0.4微米;7-NI加Tempol:TGF为2.8±0.5微米;n = 6;P = 0.343)。我们的研究结果表明:(1)降低O(-)(2)可增加NO的生物利用度,从而抑制TGF;(2)O(-)(2)和NO均在致密斑内发挥作用;(3)O(-)(2)似乎自身没有作用。