Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and.
Am J Physiol Renal Physiol. 2014 Aug 15;307(4):F427-34. doi: 10.1152/ajprenal.00072.2014. Epub 2014 Jun 25.
Increasing Na delivery to epithelial Na channels (ENaC) in the connecting tubule (CNT) dilates the afferent arteriole (Af-Art), a process we call connecting tubule glomerular feedback (CTGF). We hypothesize that aldosterone sensitizes CTGF via a nongenomic mechanism that stimulates CNT ENaC via the aldosterone receptor GPR30. Rabbit Af-Arts and their adherent CNTs were microdissected and simultaneously perfused. Two consecutive CTGF curves were elicited by increasing luminal NaCl in the CNT. During the control period, the concentration of NaCl that elicited a half-maximal response (EC50) was 37.0 ± 2.0 mmol/l; addition of aldosterone 10(-8) mol/l to the CNT lumen caused a left-shift (decrease) in EC50 to 19.3 ± 1.3 mmol/l (P = 0.001 vs. control; n = 6). Neither the transcription inhibitor actinomycin D nor the translation inhibitor cycloheximide prevented the effect of aldosterone (control EC50 = 34.7 ± 1.9 mmol/l; aldosterone+actinomycin D EC50 = 22.6 ± 1.6 mmol/l; P < 0.001 and control EC50 = 32.4 ± 4.3 mmol/l; aldosterone+cycloheximide EC50 = 17.4 ± 3.3 mmol/l; P < 0.001). The aldosterone antagonist eplerenone prevented the sensitization of CTGF by aldosterone (control EC50 = 33.2 ± 1.7 mmol/l; aldosterone+eplerenone EC50 = 33.5 ± 1.3 mmol/l; n = 7). The GPR30 receptor blocker G-36 blocked the sensitization of CTGF by aldosterone (aldosterone EC50 = 16.5 ± 1.9 mmol/l; aldosterone+G-36 EC50 = 29.0 ± 2.1 mmol/l; n = 7; P < 0.001). Finally, we found that the sensitization of CTGF by aldosterone was mediated, at least in part, by the sodium/hydrogen exchanger (NHE). We conclude that aldosterone in the CNT lumen sensitizes CTGF via a nongenomic effect involving GPR30 receptors and NHE. Sensitized CTGF induced by aldosterone may contribute to renal damage by increasing Af-Art dilation and glomerular capillary pressure (glomerular barotrauma).
增加连接小管 (CNT) 中的上皮钠通道 (ENaC) 的钠离子输送会扩张入球小动脉 (Af-Art),我们称之为连接小管肾小球反馈 (CTGF)。我们假设醛固酮通过非基因组机制敏化 CTGF,该机制通过醛固酮受体 GPR30 刺激 CNT ENaC。兔 Af-Arts 及其附着的 CNT 被微分离并同时灌注。通过增加 CNT 中的管腔 NaCl 来引出两个连续的 CTGF 曲线。在对照期间,引起半最大反应 (EC50) 的 NaCl 浓度为 37.0 ± 2.0 mmol/l;向 CNT 管腔中添加 10(-8) mol/l 的醛固酮会导致 EC50 向左移位(减少)至 19.3 ± 1.3 mmol/l(P = 0.001 与对照相比;n = 6)。转录抑制剂放线菌素 D 和翻译抑制剂环己酰亚胺都不能阻止醛固酮的作用(对照 EC50 = 34.7 ± 1.9 mmol/l;醛固酮+放线菌素 D EC50 = 22.6 ± 1.6 mmol/l;P < 0.001 和对照 EC50 = 32.4 ± 4.3 mmol/l;醛固酮+环己酰亚胺 EC50 = 17.4 ± 3.3 mmol/l;P < 0.001)。醛固酮拮抗剂依普利酮可防止醛固酮敏化 CTGF(对照 EC50 = 33.2 ± 1.7 mmol/l;醛固酮+依普利酮 EC50 = 33.5 ± 1.3 mmol/l;n = 7)。GPR30 受体阻滞剂 G-36 阻断了醛固酮对 CTGF 的敏化作用(醛固酮 EC50 = 16.5 ± 1.9 mmol/l;醛固酮+G-36 EC50 = 29.0 ± 2.1 mmol/l;n = 7;P < 0.001)。最后,我们发现醛固酮对 CTGF 的敏化作用至少部分是通过钠/氢交换器 (NHE) 介导的。我们得出的结论是,CNT 管腔中的醛固酮通过涉及 GPR30 受体和 NHE 的非基因组效应敏化 CTGF。醛固酮诱导的 CTGF 敏化可能通过增加 Af-Art 扩张和肾小球毛细血管压(肾小球气压伤)来导致肾脏损伤。