Duncan A C, Weisbuch F, Rouais F, Lazare S, Baquey Ch
National Institute of Health and Medical Research (INSERM U443), Biomaterials and Tissue Repair Unit, Université Victor Segalen Bordeaux 2, 146 Rue Léo Saignat, 33 076 Bordeaux Cedex, France.
Biosens Bioelectron. 2002 May;17(5):413-26. doi: 10.1016/s0956-5663(01)00281-0.
The relatively recent applications of microelectronics technology into the biological sciences arena has drastically revolutionized the field. New foreseeable applications include miniaturized, multiparametric biosensors for high performance multianalyte assays or DNA sequencing, biocomputers, and substrates for controlled cell growth (i.e. tissue engineering). The objectives of this work were to investigate a new method combining microphotolithographical techniques with laser excimer beam technology to create surfaces with well defined 3-D microdomains in order to delineate critical microscopic surface features governing material-cell interaction. Another obvious application of this study pertains to the fabrication of cell-based biosensors. Microfabricated surfaces were obtained with micron resolution, by "microsculpturing" polymer model surfaces using a laser excimer KrF beam coupled with a microlithographic projection technique. The laser beam after exiting a mask was focused onto the polymer target surface via an optical setup allowing for a 10-fold reduction of the mask pattern. Various 3-D micropatterned features were obtained at the micron level. Reproducible submicron features could also be obtained using this method. Subsequently, model osteoblast-like cells were plated onto the laser microfabricated surfaces in order to study the effects of particular surface microtopography on preferential cell deposition and orientation. Preferential cell deposition was observed on surfaces presenting "smooth" microtopographical transitions. This system may provide an interesting model for further insights into correlations between 3-D surface microtopography and cell response with new applications in the field biosensor, biomaterial and pharmaceutical engineering sciences (e.g. new cell based biosensors, controlled synthesis of immobilized cell derived active ingredients).
微电子技术相对较新地应用于生物科学领域,极大地变革了该领域。新的可预见应用包括用于高性能多分析物检测或DNA测序的小型化多参数生物传感器、生物计算机以及用于可控细胞生长的基质(即组织工程)。这项工作的目标是研究一种将微光刻技术与激光准分子束技术相结合的新方法,以创建具有明确三维微结构域的表面,从而描绘出控制材料与细胞相互作用的关键微观表面特征。这项研究的另一个明显应用涉及基于细胞的生物传感器的制造。通过使用激光准分子KrF束与微光刻投影技术相结合对聚合物模型表面进行“微雕刻”,以微米分辨率获得了微加工表面。离开掩膜后的激光束通过光学装置聚焦到聚合物目标表面,使掩膜图案缩小了10倍。在微米级别获得了各种三维微图案特征。使用这种方法也可以获得可重复的亚微米特征。随后,将类成骨细胞接种到激光微加工表面上,以研究特定表面微观形貌对细胞优先沉积和取向的影响。在呈现“平滑”微观形貌转变的表面上观察到了细胞优先沉积。该系统可能为进一步深入了解三维表面微观形貌与细胞反应之间的相关性提供一个有趣的模型,并在生物传感器、生物材料和制药工程科学领域有新的应用(例如新型基于细胞的生物传感器、固定化细胞衍生活性成分的可控合成)。