Suppr超能文献

Bioorganic chemistry à la baguette: studies on molecular recognition in biological systems using rigid-rod molecules.

作者信息

Matile S

机构信息

Department of Organic Chemistry, University of Geneva, Switzerland.

出版信息

Chem Rec. 2001;1(2):162-72. doi: 10.1002/tcr.6.

Abstract

Initial studies using rigid-rod molecules or "baguettes" to address bioorganic topics of current scientific concern are reported. It is illustrated how transmembrane oligo(p-phenylene)s as representative model rods can be tuned to recognize lipid bilayer membranes either by their thickness or polarization. The construction of otherwise problematic hydrogen-bonded chains along transmembrane rods yields "proton wires," which act by a mechanism that is central in bioenergetics but poorly explored by means of synthetic models. Another example focuses on multivalent ligands assembling rigid-rod cell-surface receptors into transmembrane dynamic arene arrays. The potassium transport mediated by these ligand-receptor complexes provides experimental support for the potential biological importances of the controversial cation-pi mechanism. More complex supramolecular architecture is portrayed in the first artificial beta-barrels. It is shown how programmed assembly of toroidal rigid-rod supramolecules in detergent-free water permits control of diameter of the chemical nature of their interior. Reversed rigid-rod beta-barrels are assembled to function as self-assembled ionophores, ion channel models, and transmembrane nanopores. The potential of future intratoroidal chemistry is exemplified by encapsulation and planarization of beta-carotene in water and the construction of transmembrane B-DNA at the center of a second-sphere host-guest complex à al baguette.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验