Suppr超能文献

Acetaminophen and low-flow myocardial ischemia: efficacy and antioxidant mechanisms.

作者信息

Merrill Gary F

机构信息

Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2002 Apr;282(4):H1341-9. doi: 10.1152/ajpheart.00716.2001.

Abstract

In the current study, the cardioprotective efficacy of 0.35 mmol/l acetaminophen administered 10 min after the onset of a 20-min period of global, low-flow myocardial ischemia was investigated. Matched control hearts were administered an equal volume of Krebs-Henseleit physiological buffer solution (vehicle). In separate groups of hearts, the concentration-dependent, negative inotropic properties of hydrogen peroxide and the ability of acetaminophen to attenuate these actions, as well as the effects of acetaminophen on ischemia-reperfusion-mediated protein oxidation, were studied. Acetaminophen-treated hearts regained a significantly greater fraction of baseline, preischemia control function during reperfusion than vehicle-treated hearts. For example, contractility [rate of maximal developed pressure in the left ventricle (+/-dP/dt(max))] after 10 min of reperfusion was 109 +/- 24 and 42 +/- 9 mmHg/s (P < 0.05), respectively, in the two groups. The corresponding pressure-rate products were 1,840 +/- 434 vs. 588 +/- 169 mmHgbeatsmin(-1) (P < 0.05). Acetaminophen attenuated peroxynitrite-mediated chemiluminescence in the early minutes of reperfusion (e.g., at 6 min, corresponding values for peak light production were approximately 8 x 10(6) counts/min for vehicle vs. <4 x 10(6) counts/min for acetaminophen, P < 0.05) and the negative inotropic effects of exogenously administered hydrogen peroxide (e.g., at 0.4 mmol/l hydrogen peroxide, pressure-rate products were approximately 1.0 x 10(4) and 3.8 x 10(3) mmHgbeatsmin(-1) in acetaminophen- and vehicle-treated hearts, respectively, P < 0.05). Ischemia-mediated protein oxidation was reduced by acetaminophen. The ability of acetaminophen to attenuate the damaging effects of peroxynitrite and hydrogen peroxide and to limit protein oxidation suggest antioxidant mechanisms are responsible for its cardioprotective properties during postischemia-reperfusion.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验