Suppr超能文献

Phase I clinical and pharmacokinetic study of oral penclomedine (NSC 338720) in adults with advanced solid malignancy.

作者信息

Liu Glenn, Berlin Jordan, Tutsch Kendra D, Van Ummersen Lynn, Dresen Amy, Marnocha Rebecca, Arzomanian Rhoda, Alberti Dona, Feierabend Chris, Binger Kimberly, Wilding George

机构信息

University of Wisconsin Comprehensive Cancer Center, Madison, Wisconsin 53792, USA.

出版信息

Clin Cancer Res. 2002 Mar;8(3):706-11.

Abstract

Penclomedine is a synthetic alpha-picoline derivative that has shown antitumor activity both in preclinical development and in Phase I work using an i.v. preparation. The main toxicities seen in those studies were dose dependent and mainly neurocerebellar, with hematological toxicity being far less severe. This Phase I trial of p.o. penclomedine was conducted to potentially alter the toxicity profile and to avoid the neurological side effects seen with i.v. penclomedine. Eligibility criteria included microscopic confirmation of a solid malignancy or lymphoma with a lack of effective anticancer therapy. Twenty patients were enrolled. The median age was 60.5 years, and the median performance status was one. All but one patient had received prior systemic therapy. The starting dose of penclomedine was 200 mg/m(2) p.o. for 5 days, and was escalated according to a traditional Fibonacci sequence until the maximum tolerated dose (MTD) was observed. No treatment-related deaths were observed during the study. The MTD was determined to be 800 mg/m(2) p.o. for 5 days. Dose-limiting toxicities included mainly neurocerebellar symptoms such as ataxia and dysmetria, but neurocortical symptoms, such as confusion, were seen as well. Myelosuppression was less common and resulted in the discontinuation of therapy in only two patients. Pharmacokinetics show that the observed MTD is consistent with the i.v. preparations, and that the bioavailability of p.o. penclomedine is 49 +/- 18%. This regimen can be considered for additional studies in patients with intracranial neoplasms, because good central nervous system penetration is evident. Further development of penclomedine metabolites, such as 4-O-demethylpenclomedine, should be considered to minimize dose-limiting neurotoxicity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验