Suppr超能文献

环磷酸腺苷/钙离子反应元件结合蛋白的功能对于眼优势可塑性至关重要。

cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity.

作者信息

Mower Amanda F, Liao David S, Nestler Eric J, Neve Rachael L, Ramoa Ary S

机构信息

Department of Anatomy and the Neuroscience Program, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0709, USA.

出版信息

J Neurosci. 2002 Mar 15;22(6):2237-45. doi: 10.1523/JNEUROSCI.22-06-02237.2002.

Abstract

The monocular deprivation model of amblyopia is characterized by a reduction in cortical responses to stimulation of the deprived eye. Although the effects of monocular deprivation on the primary visual cortex have been well characterized physiologically and anatomically, the molecular mechanisms underlying ocular dominance plasticity remain unknown. Previous studies have indicated that the transcription factor adenosine cAMP/Ca(2+) response element-binding protein (CREB) is activated during monocular deprivation. However, it remains unknown whether CREB function is required for the loss of cortical responses to the deprived eye. To address this issue, we used the herpes simplex virus (HSV) to express a dominant negative form of CREB (HSV-mCREB) containing a single point mutation that prevents its activation. Quantitative single-unit electrophysiology showed that cortical expression of this mutated form of CREB during monocular deprivation prevented the loss of responses to the deprived eye. This effect was specific and not related to viral toxicity, because overexpression of functional CREB or expression of beta-galactosidase using HSV injections did not prevent the ocular dominance shift during monocular deprivation. Additional evidence for specificity was provided by the finding that blockade of ocular dominance plasticity was reversible; animals treated with HSV-mCREB recovered ocular dominance plasticity when mCREB expression declined. Moreover, this effect did not result from a suppression of sensory responses caused by the viral infection because neurons in infected cortex responded normally to visual stimulation. These findings demonstrate that CREB function is essential for ocular dominance plasticity.

摘要

弱视的单眼剥夺模型的特点是皮质对被剥夺眼刺激的反应降低。尽管单眼剥夺对初级视皮层的影响在生理和解剖学上已得到充分表征,但眼优势可塑性的分子机制仍不清楚。先前的研究表明,转录因子腺苷环磷腺苷/钙离子反应元件结合蛋白(CREB)在单眼剥夺期间被激活。然而,CREB功能是否是皮质对被剥夺眼反应丧失所必需的仍不清楚。为了解决这个问题,我们使用单纯疱疹病毒(HSV)来表达一种含有单点突变的显性负性形式的CREB(HSV-mCREB),该突变阻止其激活。定量单单位电生理学表明,在单眼剥夺期间这种突变形式的CREB在皮质中的表达可防止对被剥夺眼反应的丧失。这种效应是特异性的,与病毒毒性无关,因为使用HSV注射过表达功能性CREB或表达β-半乳糖苷酶并不能阻止单眼剥夺期间的眼优势转移。特异性的额外证据来自于眼优势可塑性阻断是可逆的这一发现;当mCREB表达下降时,用HSV-mCREB处理的动物恢复了眼优势可塑性。此外,这种效应不是由病毒感染引起的感觉反应抑制所致,因为受感染皮层中的神经元对视觉刺激反应正常。这些发现表明,CREB功能对于眼优势可塑性至关重要。

相似文献

1
cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity.
J Neurosci. 2002 Mar 15;22(6):2237-45. doi: 10.1523/JNEUROSCI.22-06-02237.2002.
2
Different mechanisms for loss and recovery of binocularity in the visual cortex.
J Neurosci. 2002 Oct 15;22(20):9015-23. doi: 10.1523/JNEUROSCI.22-20-09015.2002.
4
Stimulus for rapid ocular dominance plasticity in visual cortex.
J Neurophysiol. 2006 May;95(5):2947-50. doi: 10.1152/jn.01328.2005. Epub 2006 Feb 15.
5
Early alcohol exposure impairs ocular dominance plasticity throughout the critical period.
Brain Res Dev Brain Res. 2005 Jun 9;157(1):107-11. doi: 10.1016/j.devbrainres.2005.03.012.
7
A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB.
Learn Mem. 2004 Nov-Dec;11(6):738-47. doi: 10.1101/lm.75304. Epub 2004 Nov 10.
8
Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.
J Neurophysiol. 2004 Oct;92(4):2113-21. doi: 10.1152/jn.00266.2004. Epub 2004 Apr 21.
9
Ocular dominance plasticity: A binocular combination task finds no cumulative effect with repeated patching.
Vision Res. 2019 Aug;161:36-42. doi: 10.1016/j.visres.2019.05.007. Epub 2019 Jun 18.
10
Short-term monocular deprivation reduces inter-ocular suppression of the deprived eye.
Vision Res. 2020 Aug;173:29-40. doi: 10.1016/j.visres.2020.05.001. Epub 2020 May 24.

引用本文的文献

2
PDE2A Inhibition Enhances Axonal Sprouting, Functional Connectivity, and Recovery after Stroke.
J Neurosci. 2022 Nov 2;42(44):8225-8236. doi: 10.1523/JNEUROSCI.0730-22.2022. Epub 2022 Sep 26.
3
Time Window of the Critical Period for Neuroplasticity in S1, V1, and A1 Sensory Areas of Small Rodents: A Systematic Review.
Front Neuroanat. 2022 Mar 17;16:763245. doi: 10.3389/fnana.2022.763245. eCollection 2022.
4
Phosphorylation of CREB at Serine 142 and 143 Is Essential for Visual Cortex Plasticity.
eNeuro. 2021 Oct 28;8(5). doi: 10.1523/ENEURO.0217-21.2021. Print 2021 Sep-Oct.
5
Synaptosomal Actin Dynamics in the Developmental Visual Cortex Regulate Behavioral Visual Acuity in Rats.
Invest Ophthalmol Vis Sci. 2021 Jun 1;62(7):20. doi: 10.1167/iovs.62.7.20.
6
Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities.
Pharmacol Ther. 2021 Oct;226:107858. doi: 10.1016/j.pharmthera.2021.107858. Epub 2021 Apr 22.
7
In Vivo Imaging of the Coupling between Neuronal and CREB Activity in the Mouse Brain.
Neuron. 2020 Mar 4;105(5):799-812.e5. doi: 10.1016/j.neuron.2019.11.028. Epub 2019 Dec 26.
8
CREB controls cortical circuit plasticity and functional recovery after stroke.
Nat Commun. 2018 Jun 8;9(1):2250. doi: 10.1038/s41467-018-04445-9.
9
GABAB receptor-dependent bidirectional regulation of critical period ocular dominance plasticity in cats.
PLoS One. 2017 Jun 29;12(6):e0180162. doi: 10.1371/journal.pone.0180162. eCollection 2017.
10
The Role of CREB, SRF, and MEF2 in Activity-Dependent Neuronal Plasticity in the Visual Cortex.
J Neurosci. 2017 Jul 12;37(28):6628-6637. doi: 10.1523/JNEUROSCI.0766-17.2017. Epub 2017 Jun 12.

本文引用的文献

6
Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression.
Science. 2000 May 19;288(5469):1254-7. doi: 10.1126/science.288.5469.1254.
8
Effects of neurotrophins on cortical plasticity: same or different?
J Neurosci. 2000 Mar 15;20(6):2155-65. doi: 10.1523/JNEUROSCI.20-06-02155.2000.
9
Maps of central visual space in ferret V1 and V2 lack matching inputs from the two eyes.
J Neurosci. 1999 Aug 15;19(16):7089-99. doi: 10.1523/JNEUROSCI.19-16-07089.1999.
10
The critical period for ocular dominance plasticity in the Ferret's visual cortex.
J Neurosci. 1999 Aug 15;19(16):6965-78. doi: 10.1523/JNEUROSCI.19-16-06965.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验