Bashor Caleb, Denu John M, Brennan Richard G, Ullman Buddy
Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201-3098, USA.
Biochemistry. 2002 Mar 26;41(12):4020-31. doi: 10.1021/bi0158730.
Adenine phosphoribosyltransferase (APRT, EC 2.4.2.7) catalyzes the reversible phosphoribosylation of adenine from alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to form AMP and PP(i). Three-dimensional structures of the dimeric APRT enzyme from Leishmania donovani (LdAPRT) bear many similarities to other members of the type 1 phosphoribosyltransferase family but do not reveal the structural basis for catalysis (Phillips, C. L., Ullman, B., Brennan, R. G., and Hill, C. P. (1999) EMBO J. 18, 3533-3545). To address this issue, a steady state and transient kinetic analysis of the enzyme was performed in order to determine the catalytic mechanism. Initial velocity and product inhibition studies indicated that LdAPRT follows an ordered sequential mechanism in which PRPP is the first substrate to bind and AMP is the last product to leave. This mechanistic model was substantiated by equilibrium isotope exchange and fluorescence binding studies, which provided dissociation constants for the LdAPRT-PRPP and LdAPRT-AMP binary complexes. Pre-steady-state kinetic analysis of the forward reaction revealed a burst in product formation indicating that phosphoribosyl transfer proceeds rapidly relative to some rate-limiting product release event. Transient fluorescence competition experiments enabled measurement of rates of binary complex dissociation that implicated AMP release as rate-limiting for the forward reaction. Kinetics of product ternary complex formation were evaluated using the fluorophore formycin AMP and established rate constants for pyrophosphate binding to the LdAPRT-formycin AMP complex. Taken together, these data enabled the complete formulation of an ordered bi-bi kinetic mechanism for LdAPRT in which all of the rate constants were either measured or calculated.
腺嘌呤磷酸核糖转移酶(APRT,EC 2.4.2.7)催化腺嘌呤从α-D-5-磷酸核糖-1-焦磷酸(PRPP)进行可逆的磷酸核糖基化反应,生成AMP和焦磷酸(PP(i))。来自杜氏利什曼原虫的二聚体APRT酶(LdAPRT)的三维结构与1型磷酸核糖转移酶家族的其他成员有许多相似之处,但并未揭示催化作用的结构基础(菲利普斯,C.L.,厄尔曼,B.,布伦南,R.G.,以及希尔,C.P.(1999年)《欧洲分子生物学组织杂志》18,3533 - 3545)。为了解决这个问题,对该酶进行了稳态和瞬态动力学分析,以确定其催化机制。初始速度和产物抑制研究表明,LdAPRT遵循有序的顺序机制,其中PRPP是第一个结合的底物,AMP是最后一个离开的产物。这种机制模型通过平衡同位素交换和荧光结合研究得到证实,这些研究提供了LdAPRT - PRPP和LdAPRT - AMP二元复合物的解离常数。正向反应的稳态前动力学分析显示产物形成有一个爆发阶段,表明磷酸核糖基转移相对于某些限速产物释放事件进行得很快。瞬态荧光竞争实验能够测量二元复合物解离速率,这表明AMP释放是正向反应的限速步骤。使用荧光团甲氨蝶呤AMP评估产物三元复合物形成的动力学,并确定了焦磷酸与LdAPRT - 甲氨蝶呤AMP复合物结合的速率常数。综合这些数据,能够完整地构建LdAPRT的有序双底物双产物动力学机制,其中所有速率常数要么是测量得到的,要么是计算得出的。