Suppr超能文献

能量本征函数的非微扰部分和微扰部分:一个三轨道示意壳层模型。

Nonperturbative and perturbative parts of energy eigenfunctions: a three-orbital schematic shell model.

作者信息

Wang Wen-ge

机构信息

Department of Physics, Southeast University, Nanjing 210096, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):036219. doi: 10.1103/PhysRevE.65.036219. Epub 2002 Feb 27.

Abstract

We study the division of components of energy eigenfunctions, as the expansion of perturbed states in unperturbed states, into nonperturbative and perturbative parts in a three-orbital schematic shell model possessing a chaotic classical limit, the Hamiltonian of which is composed of a Hamiltonian of noninteracting particles and a perturbation. The perturbative parts of eigenfunctions are expanded in a convergent perturbation expansion by making use of the nonperturbative parts. The division is shown to have the property that, when the underlying classical system is chaotic, the statistics of the components of the nonperturbative parts whose relative localization length are close to 1 is in agreement with the prediction of random-matrix theory. When the underlying classical system is mixed, main bodies of most of the eigenfunctions are found to occupy parts of their nonperturbative regions, with some of the rest of the eigenfunctions being "ergodic" in their nonperturbative regions due to avoided level crossings. In case of the classical system being chaotic, most of the eigenfunctions are found "ergodic" or almost "ergodic" in their nonperturbative regions. Numerical results show that the average relative localization length of nonperturbative parts of eigenfunctions is useful in characterizing the behavior of the quantum system in the process of the underlying classical system changing from a mixed system to a chaotic one.

摘要

我们研究了在具有混沌经典极限的三轨道示意性壳层模型中,作为微扰态在非微扰态下展开的能量本征函数分量的划分,该模型的哈密顿量由非相互作用粒子的哈密顿量和一个微扰项组成。本征函数的微扰部分通过利用非微扰部分以收敛的微扰展开形式展开。结果表明,当基础经典系统是混沌的时,相对局域长度接近1的非微扰部分的分量统计与随机矩阵理论的预测一致。当基础经典系统是混合的时,发现大多数本征函数的主体占据其非微扰区域的部分,其余一些本征函数由于避免能级交叉而在其非微扰区域是“遍历性的”。在经典系统是混沌的情况下,发现大多数本征函数在其非微扰区域是“遍历性的”或几乎是“遍历性的”。数值结果表明,本征函数非微扰部分的平均相对局域长度有助于表征基础经典系统从混合系统转变为混沌系统过程中量子系统的行为。

相似文献

2
Approach to energy eigenvalues and eigenfunctions from nonperturbative regions of eigenfunctions.从本征函数的非微扰区域探讨能量本征值和本征函数
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Mar;63(3 Pt 2):036215. doi: 10.1103/PhysRevE.63.036215. Epub 2001 Feb 26.
5
Localization in band random matrix models with and without increasing diagonal elements.带随机矩阵模型中的定位,包括对角元素递增和不递增的情况。
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jun;65(6 Pt 2):066207. doi: 10.1103/PhysRevE.65.066207. Epub 2002 Jun 19.
6
Localization in chaotic systems with a single-channel opening.具有单通道开放的混沌系统中的定位
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012921. doi: 10.1103/PhysRevE.92.012921. Epub 2015 Jul 30.
7
Failure of random matrix theory to correctly describe quantum dynamics.随机矩阵理论未能正确描述量子动力学。
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 2):065202. doi: 10.1103/PhysRevE.64.065202. Epub 2001 Nov 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验