Boeck Thomas, Vitanov Nikolay K
Max-Planck-Institute for Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2B):037203. doi: 10.1103/PhysRevE.65.037203. Epub 2002 Mar 7.
Three-dimensional surface-tension-driven Bénard convection at zero Prandtl number is computed in the smallest possible doubly periodic rectangular domain that is compatible with the hexagonal flow structure at the linear stability threshold of the quiescent state. Upon increasing the Marangoni number beyond this threshold, the initially stationary flow becomes quickly time dependent. We investigate the transition to chaos for the case of a free-slip bottom wall by means of an analysis of the kinetic energy time series. We observe a period-doubling scenario for the transition to chaos of the energy attractor, intermittent behavior of a component of the mean velocity field, three characteristic energy levels, and two frequencies that contain a considerable amount of the power spectral density connected with the kinetic energy time series.
在零普朗特数下,三维表面张力驱动的贝纳德对流在与静态线性稳定性阈值处的六边形流动结构兼容的尽可能小的双周期矩形域中进行计算。当马兰戈尼数增加到超过该阈值时,最初静止的流动很快变得随时间变化。我们通过对动能时间序列的分析,研究了自由滑移底壁情况下向混沌的转变。我们观察到能量吸引子向混沌转变的倍周期分岔情形、平均速度场一个分量的间歇行为、三个特征能量水平以及两个频率,这两个频率包含了与动能时间序列相关的相当一部分功率谱密度。