Cartegni Luca, Krainer Adrian R
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
Nat Genet. 2002 Apr;30(4):377-84. doi: 10.1038/ng854. Epub 2002 Mar 4.
Alteration of correct splicing patterns by disruption of an exonic splicing enhancer may be a frequent mechanism by which point mutations cause genetic diseases. Spinal muscular atrophy results from the lack of functional survival of motor neuron 1 gene (SMN1), even though all affected individuals carry a nearly identical, normal SMN2 gene. SMN2 is only partially active because a translationally silent, single-nucleotide difference in exon 7 causes exon skipping. Using ESE motif-prediction tools, mutational analysis and in vivo and in vitro splicing assays, we show that this single-nucleotide change occurs within a heptamer motif of an exonic splicing enhancer, which in SMN1 is recognized directly by SF2/ASF. The abrogation of the SF2/ASF-dependent ESE is the basis for inefficient inclusion of exon 7 in SMN2, resulting in the spinal muscular atrophy phenotype.
外显子剪接增强子的破坏导致正确剪接模式的改变,可能是点突变引发遗传疾病的常见机制。脊髓性肌萎缩症是由于缺乏功能性运动神经元存活基因1(SMN1)所致,尽管所有受影响个体都携带一个几乎相同的正常SMN2基因。SMN2仅有部分活性,因为外显子7中一个不影响翻译的单核苷酸差异导致外显子跳跃。利用外显子剪接增强子基序预测工具、突变分析以及体内和体外剪接试验,我们发现这一单核苷酸变化发生在外显子剪接增强子的一个七聚体基序内,在SMN1中该基序可被SF2/ASF直接识别。SF2/ASF依赖的外显子剪接增强子的缺失是SMN2中外显子7低效包含的基础,从而导致脊髓性肌萎缩症表型。