Lerma F A, Williamson J F
Radiation Oncology Center, Washington University, St Louis, Missouri 63110, USA.
Med Phys. 2002 Mar;29(3):325-33. doi: 10.1118/1.1412243.
To present an accurate method to identify the positions and orientations of intracavitary (ICT) brachytherapy applicators imaged in 3D CT scans, in support of Monte Carlo photon-transport simulations, enabling accurate dose modeling in the presence of applicator shielding and interapplicator attenuation.
The method consists of finding the transformation that maximizes the coincidence between the known 3D shapes of each applicator component (colpostats and tandem) with the volume defined by contours of the corresponding surface on each CT slice. We use this technique to localize Fletcher-Suit CT-compatible applicators for three cervix cancer patients using post-implant CT examinations (3 mm slice thickness and separation). Dose distributions in 1-to-1 registration with the underlying CT anatomy are derived from 3D Monte Carlo photon-transport simulations incorporating each applicator's internal geometry (source encapsulation, high-density shields, and applicator body) oriented in relation to the dose matrix according to the measured localization transformations. The precision and accuracy of our localization method are assessed using CT scans, in which the positions and orientations of dense rods and spheres (in a precision-machined phantom) were measured at various orientations relative to the gantry.
Using this method, we register 3D Monte Carlo dose calculations directly onto post insertion patient CT studies. Using CT studies of a precisely machined phantom, the absolute accuracy of the method was found to be +/-0.2 mm in plane, and +/-0.3 mm in the axial direction while its precision was +/-0.2 mm in plane, and +/-0.2 mm axially.
We have developed a novel, and accurate technique to localize intracavitary brachytherapy applicators in 3D CT imaging studies, which supports 3D dose planning involving detailed 3D Monte Carlo dose calculations, modeling source positions, shielding and interapplicator shielding, accurately.
提出一种精确方法,用于识别在三维CT扫描中成像的腔内近距离放射治疗施源器的位置和方向,以支持蒙特卡罗光子传输模拟,从而在存在施源器屏蔽和施源器间衰减的情况下实现精确的剂量建模。
该方法包括找到一种变换,使每个施源器组件(阴道柱形施源器和串联施源器)的已知三维形状与每个CT切片上相应表面轮廓所定义的体积之间的重合度最大化。我们使用该技术通过植入后CT检查(切片厚度和间距均为3mm)来定位三名宫颈癌患者的弗莱彻-休伊特CT兼容施源器。与基础CT解剖结构进行一对一配准的剂量分布来自三维蒙特卡罗光子传输模拟,该模拟结合了每个施源器的内部几何结构(源封装、高密度屏蔽和施源器主体),并根据测量的定位变换相对于剂量矩阵进行定向。我们使用CT扫描评估定位方法的精度和准确性,在CT扫描中,在相对于机架的不同方向上测量了精密加工体模中密集棒和球体的位置和方向。
使用该方法,我们将三维蒙特卡罗剂量计算直接配准到插入后患者的CT研究上。通过对精密加工体模的CT研究发现,该方法在平面上的绝对精度为±0.2mm,在轴向上为±0.3mm,而其精度在平面上为±0.2mm,轴向上为±0.2mm。
我们开发了一种新颖且精确的技术,用于在三维CT成像研究中定位腔内近距离放射治疗施源器,该技术支持涉及详细三维蒙特卡罗剂量计算、精确模拟源位置、屏蔽和施源器间屏蔽的三维剂量规划。