Burchett Scott A, Flanary Paul, Aston Christopher, Jiang Lixin, Young Kathleen H, Uetz Peter, Fields Stanley, Dohlman Henrik G
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06536, USA.
J Biol Chem. 2002 Jun 21;277(25):22156-67. doi: 10.1074/jbc.M202254200. Epub 2002 Apr 8.
All members of the regulator of G protein signaling (RGS) family contain a conserved core domain that can accelerate G protein GTPase activity. The RGS in yeast, Sst2, can inhibit a G protein signal leading to mating. In addition, some RGS proteins contain an N-terminal domain of unknown function. Here we use complementary whole genome analysis methods to investigate the function of the N-terminal Sst2 domain. To identify a signaling pathway regulated by N-Sst2, we performed genome-wide transcription profiling of cells expressing this fragment alone and found differences in 53 transcripts. Of these, 40 are induced by N-Sst2, and nearly all contain a stress response element (STRE) in the promoter region. To identify components of a signaling pathway leading from N-Sst2 to STREs, we performed a genome-wide two-hybrid analysis using N-Sst2 as bait and found 17 interacting proteins. To identify the functionally relevant interacting proteins, we analyzed all of the available gene deletion mutants and found three (vps36 Delta, pep12 Delta, and tlg2 Delta) that induce STRE and also repress pheromone-dependent transcription. We selected VPS36 for further characterization. A vps36 Delta mutation diminishes signaling by pheromone as well as by downstream components including the G protein, effector kinase (Ste11), and transcription factor (Ste12). Conversely, overexpression of Vps36 enhances the pheromone response in sst2 Delta cells but not in wild type. These findings indicate that Vps36 and Sst2 have opposite and opposing effects on the pheromone and stress response pathways, with Vps36 acting downstream of the G protein and independently of Sst2 RGS activity.
G蛋白信号调节因子(RGS)家族的所有成员都包含一个保守的核心结构域,该结构域可加速G蛋白的GTP酶活性。酵母中的RGS蛋白Sst2可抑制导致交配的G蛋白信号。此外,一些RGS蛋白含有功能未知的N端结构域。在这里,我们使用互补的全基因组分析方法来研究N端Sst2结构域的功能。为了鉴定由N-Sst2调节的信号通路,我们对单独表达该片段的细胞进行了全基因组转录谱分析,发现53个转录本存在差异。其中,40个由N-Sst2诱导,几乎所有这些转录本的启动子区域都含有应激反应元件(STRE)。为了鉴定从N-Sst2到STREs的信号通路的组成成分,我们以N-Sst2为诱饵进行了全基因组双杂交分析,发现了17种相互作用蛋白。为了鉴定功能相关的相互作用蛋白,我们分析了所有可用的基因缺失突变体,发现其中三个(vps36Δ、pep12Δ和tlg2Δ)可诱导STRE,同时也抑制信息素依赖性转录。我们选择VPS36进行进一步表征。vps36Δ突变会减弱信息素以及包括G蛋白效应激酶(Ste11)和转录因子(Ste12)在内的下游成分的信号传导。相反,Vps36的过表达增强了sst2Δ细胞中的信息素反应,但在野生型细胞中没有增强。这些发现表明,Vps36和Sst2对信息素和应激反应通路具有相反的作用,Vps36在G蛋白下游起作用,且独立于Sst2的RGS活性。