Suppr超能文献

Decrease in calbindin content significantly alters LTP but not NMDA receptor and calcium channel properties.

作者信息

Jouvenceau A, Potier B, Poindessous-Jazat F, Dutar P, Slama A, Epelbaum J, Billard J-M

机构信息

Neurobiologie de la Croissance et de la Sénescence, INSERM U 549, IFR Broca-Sainte Anne, 2ter rue d'Alésia, 75014, Paris, France.

出版信息

Neuropharmacology. 2002 Mar;42(4):444-58. doi: 10.1016/s0028-3908(01)00202-7.

Abstract

The contribution of the cytosolic calcium binding protein calbindin D(28K) (CaBP) to the synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice. We showed that long-term potentiation (LTP) induced by tetanic stimulation in CaBP-deficient mice was impaired. The fundamental biophysical properties of NMDA receptors and their number were not modified in CaBP-deficient mice. We also demonstrated that the physiological properties of calcium channels were identical between genotypes. An insufficient Ca(2+) entry through NMDA receptors or calcium channels, or a decrease in NMDA receptor density are unlikely to explain this impairment of LTP. Interestingly, we showed that the loss of LTP was not prevented by glycine but was restored in the presence of a low concentration of the NMDA receptor antagonist D-APV (5 microM) and of the calcium chelator BAPTA-AM (5 microM). Moreover, we observed a loss of LTP in the wild-type mice when the postsynaptic tetanic-induced Ca(2+) rise is excessively increased. Conversely, a weaker tetanus stimulation allowed LTP induction and maintenance in CaBP-deficient mice. These results suggest that a higher cytosol Ca(2+), due to the decrease of CaBP expression may impair LTP induction and maintenance mechanisms without affecting the mechanisms of calcium entry. Thus, CaBP plays a critical role in long term synaptic plasticity by limiting the elevation of calcium rise in the cytosol to some appropriate spatio-temporal pattern.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验