Suppr超能文献

Use of a blood substitute to determine instantaneous murine right ventricular thickening with optical coherence tomography.

作者信息

Villard Joseph W, Feldman Marc D, Kim Jeehyun, Milner Thomas E, Freeman Gregory L

机构信息

University of Texas at Austin Biomedical Engineering Program, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.

出版信息

Circulation. 2002 Apr 16;105(15):1843-9. doi: 10.1161/01.cir.0000014418.99708.86.

Abstract

BACKGROUND

A satisfactory imaging technique to determine regional wall thickening of the murine myocardium is not available. Although cardiovascular imaging with light offers a novel solution, application is problematic because scattering by erythrocytes causes significant optical attenuation.

METHODS AND RESULTS

Optical coherence tomography (OCT) is a technique for detailed resolution imaging of highly scattering biological tissues. To reduce the high level of blood scattering, a method was devised whereby murine blood was replaced with a hemoglobin-based blood substitute. The scattering and absorption properties of in vitro preparations of whole blood and dilutions of blood with a blood substitute were determined with a spectrophotometer and an inverse-adding doubling algorithm. OCT imaging of the same dilutions demonstrated a significant reduction in scattering at a hematocrit <5%. A fiber-optic OCT imaging system was used to image the murine right midventricular free wall before and after isovolumic replacement with blood substitute. Strong light attenuation prevented full thickness imaging before replacement, whereas visualization of the full ventricular thickness was possible after replacement. Baseline and imaging hematocrits were 52.4+/-3.8% and 3.7+/-1.2%, respectively. End-systolic and end-diastolic thickness values were 0.458+/-0.051 mm and 0.352+/-0.047 mm. Percent thickening fraction was 30.8+/- 7.5%.

CONCLUSION

Optical imaging of the intact beating murine right ventricle was substantially improved by isovolumic blood replacement with a hemoglobin-based blood substitute. Although the current study has been directed toward imaging the murine heart, a blood substitute may be applied to various optical diagnostic and therapeutic techniques under investigation in cardiovascular medicine.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验