Dolliver D D, Ordonez C A
Department of Physics, University of North Texas, Denton, TX 76203-5370, USA.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jun;59(6):7121-7. doi: 10.1103/physreve.59.7121.
A theoretical study is presented which indicates that it is possible to confine a neutral plasma using static electric and solenoidal magnetic fields. The plasma consists of equal temperature electrons and highly stripped ions. The solenoidal magnetic field provides radial confinement, while the electric field, which produces an axial nested-well potential profile, provides axial confinement. A self-consistent, multidimensional numerical solution for the electric potential is obtained, and a fully kinetic theoretical treatment on axial transport is used to determine an axial confinement time scale. The effect on confinement of the presence of a radial electric field is explored with the use of ion trajectory calculations. A thermal, neutral, high-charge-state plasma confined in a nested-well trap opens new possibilities for fundamental studies on plasma recombination and cross-field transport processes under highly controlled conditions.
本文提出了一项理论研究,表明利用静电场和螺线管磁场来约束中性等离子体是可行的。该等离子体由温度相等的电子和高度剥离的离子组成。螺线管磁场提供径向约束,而产生轴向嵌套阱势分布的电场提供轴向约束。获得了电势的自洽多维数值解,并采用关于轴向输运的全动力学理论处理来确定轴向约束时间尺度。通过离子轨迹计算探索了径向电场的存在对约束的影响。在嵌套阱陷阱中约束的热、中性、高电荷态等离子体为在高度可控条件下进行等离子体重组和跨场输运过程的基础研究开辟了新的可能性。