Chen P, Viñals J
Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4130, USA.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):559-70. doi: 10.1103/physreve.60.559.
A nonlinear theory of pattern selection in parametric surface waves (Faraday waves) is presented that is not restricted to small viscous dissipation. By using a multiple scale asymptotic expansion near threshold, a standing wave amplitude equation is derived from the governing equations. The amplitude equation is of gradient form, and the coefficients of the associated Lyapunov function are computed for regular patterns of various symmetries as a function of a viscous damping parameter gamma. For gamma approximately 1, the selected wave pattern comprises a single standing wave (stripe pattern). For gamma<<1, patterns of square symmetry are obtained in the capillary regime (large frequencies). At lower frequencies (the mixed gravity-capillary regime), a sequence of sixfold (hexagonal), eightfold, ...patterns are predicted. For even lower frequencies (gravity waves) a stripe pattern is again selected. Our predictions of the stability regions of the various patterns are in quantitative agreement with recent experiments conducted in large aspect ratio systems.
本文提出了一种参数表面波(法拉第波)模式选择的非线性理论,该理论不限于小粘性耗散。通过在阈值附近使用多尺度渐近展开,从控制方程中导出了驻波振幅方程。振幅方程具有梯度形式,并针对各种对称性的规则模式,计算了作为粘性阻尼参数γ的函数的相关李雅普诺夫函数的系数。对于γ约为1的情况,所选波模式包括单个驻波(条纹模式)。对于γ<<1的情况,在毛细作用区(高频)获得了方形对称模式。在较低频率(重力 - 毛细混合区),预测会出现一系列六重(六边形)、八重……模式。对于更低频率(重力波),再次选择条纹模式。我们对各种模式稳定性区域的预测与最近在大纵横比系统中进行的实验在定量上是一致的。