Suppr超能文献

多分量光折变类孤子波:稳定性、局域化与孤子渐近性

Multicomponent photorefractive cnoidal waves: stability, localization, and soliton asymptotics.

作者信息

Petnikova V M, Shuvalov V V, Vysloukh V A

机构信息

International Laser Center, M.V. Lomonosov Moscow State University, Vorob'evy Gory, Moscow 119899, Russia.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):1009-18. doi: 10.1103/physreve.60.1009.

Abstract

An algorithm of building up a different class of stable self-consistent multicomponent periodical solutions of the nonlinear Schrödinger equation--multicomponent cnoidal waves--has been formulated by the example of a nonlinear wave propagating through a photorefractive crystal with a drift nonlinear response. Exact analytical expressions, describing distribution of light field in the components, have been obtained for solutions, which include up to three mutually incoherent components. It has been shown that such cnoidal waves are stable and their spatial structure is robust to collisions with the same cnoidal waves and to stochastic perturbations of the components' intensity distributions in a sufficiently wide range of changing spatial period.

摘要

通过一个具有漂移非线性响应的光折变晶体中传播的非线性波的例子,已经构建了一种算法,用于建立非线性薛定谔方程的一类不同的稳定自洽多分量周期解——多分量椭圆余弦波。对于包含多达三个相互非相干分量的解,已经获得了描述各分量中光场分布的精确解析表达式。结果表明,这种椭圆余弦波是稳定的,并且在足够宽的空间周期变化范围内,它们的空间结构对于与相同椭圆余弦波的碰撞以及分量强度分布的随机扰动具有鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验