Suppr超能文献

RGS3通过与RGS(G蛋白信号调节因子)结构域不同的N端区域与14-3-3相互作用。

RGS3 interacts with 14-3-3 via the N-terminal region distinct from the RGS (regulator of G-protein signalling) domain.

作者信息

Niu Jiaxin, Scheschonka Astrid, Druey Kirk M, Davis Amanda, Reed Eleanor, Kolenko Vladimir, Bodnar Richard, Voyno-Yasenetskaya Tatyana, Du Xiaoping, Kehrl John, Dulin Nickolai O

机构信息

Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, U.S.A.

出版信息

Biochem J. 2002 Aug 1;365(Pt 3):677-84. doi: 10.1042/BJ20020390.

Abstract

RGS3 belongs to a family of the regulators of G-protein signalling (RGS), which bind and inhibit the G alpha subunits of heterotrimeric G-proteins via a homologous RGS domain. Increasing evidence suggests that RGS proteins can also interact with targets other than G-proteins. Employing yeast two-hybrid screening of a cDNA library, we identified an interaction between RGS3 and the phosphoserine-binding protein 14-3-3. This interaction was confirmed by in vitro binding and co-immunoprecipitation experiments. RGS3-deletion analysis revealed the presence of a single 14-3-3-binding site located outside of the RGS domain. Ser(264) was then identified as the 14-3-3-binding site of RGS3. The S(264)A mutation resulted in the loss of RGS3 binding to 14-3-3, without affecting its ability to bind G alpha(q). Signalling studies showed that the S(264)A mutant was more potent than the wild-type RGS3 in inhibition of G-protein-mediated signalling. Binding experiments revealed that RGS3 exists in two separate pools, either 14-3-3-bound or G-protein-bound, and that the 14-3-3-bound RGS3 is unable to interact with G-proteins. These data are consistent with the model wherein 14-3-3 serves as a scavenger of RGS3, regulating the amounts of RGS3 available for binding G-proteins. This study describes a new level in the regulation of G-protein signalling, in which the inhibitors of G-proteins, RGS proteins, can themselves be regulated by phosphorylation and binding 14-3-3.

摘要

RGS3属于G蛋白信号调节因子(RGS)家族,该家族通过同源的RGS结构域结合并抑制异源三聚体G蛋白的Gα亚基。越来越多的证据表明,RGS蛋白还可以与G蛋白以外的靶点相互作用。通过对cDNA文库进行酵母双杂交筛选,我们鉴定出RGS3与磷酸丝氨酸结合蛋白14-3-3之间存在相互作用。这种相互作用通过体外结合和共免疫沉淀实验得到了证实。RGS3缺失分析显示,在RGS结构域之外存在一个单一的14-3-3结合位点。随后,Ser(264)被确定为RGS3的14-3-3结合位点。S(264)A突变导致RGS3与14-3-3的结合丧失,而不影响其与Gα(q)结合的能力。信号转导研究表明,S(264)A突变体在抑制G蛋白介导的信号转导方面比野生型RGS3更有效。结合实验表明,RGS3以两种独立的形式存在,即与14-3-3结合或与G蛋白结合,并且与14-3-3结合的RGS3无法与G蛋白相互作用。这些数据与以下模型一致,即14-3-3作为RGS3的清除剂,调节可用于结合G蛋白的RGS3的量。本研究描述了G蛋白信号调节的一个新层面,其中G蛋白的抑制剂RGS蛋白本身可通过磷酸化和与14-3-3结合来调节。

相似文献

2
14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3).
J Struct Biol. 2010 Jun;170(3):451-61. doi: 10.1016/j.jsb.2010.03.009. Epub 2010 Mar 27.
4
Genomic organization, 5'-flanking region, and chromosomal localization of the human RGS3 gene.
Genomics. 1997 Oct 15;45(2):429-33. doi: 10.1006/geno.1997.4929.
7
Allosteric regulation of GAP activity by phospholipids in regulators of G-protein signaling.
Methods Enzymol. 2004;389:89-105. doi: 10.1016/S0076-6879(04)89006-2.
8
Regulators of G protein signalling: a spotlight on emerging functions in the cardiovascular system.
Curr Opin Pharmacol. 2007 Apr;7(2):201-7. doi: 10.1016/j.coph.2006.11.007. Epub 2007 Feb 2.
9
Modulation of subfamily B/R4 RGS protein function by 14-3-3 proteins.
Cell Signal. 2006 Dec;18(12):2209-22. doi: 10.1016/j.cellsig.2006.05.011. Epub 2006 May 23.

引用本文的文献

2
Regulation of tyrosine hydroxylase is preserved across different homo- and heterodimeric 14-3-3 proteins.
Amino Acids. 2016 May;48(5):1221-9. doi: 10.1007/s00726-015-2157-0. Epub 2016 Jan 29.
3
RGS3 controls T lymphocyte migration in a model of Th2-mediated airway inflammation.
Am J Physiol Lung Cell Mol Physiol. 2013 Nov 15;305(10):L693-701. doi: 10.1152/ajplung.00214.2013. Epub 2013 Sep 27.
4
A finer tuning of G-protein signaling through regulated control of RGS proteins.
Am J Physiol Heart Circ Physiol. 2012 Jul;303(1):H19-35. doi: 10.1152/ajpheart.00764.2011. Epub 2012 Apr 27.
5
Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function.
J Biol Chem. 2011 Dec 16;286(50):43527-36. doi: 10.1074/jbc.M111.273573. Epub 2011 Oct 25.
6
IQGAP1 is a novel CXCR2-interacting protein and essential component of the "chemosynapse".
PLoS One. 2011;6(8):e23813. doi: 10.1371/journal.pone.0023813. Epub 2011 Aug 18.
7
Regulators of G-protein signaling in the heart and their potential as therapeutic targets.
Circ Res. 2011 Jul 22;109(3):320-33. doi: 10.1161/CIRCRESAHA.110.231423.
8
Phosphorylation of myocardin by extracellular signal-regulated kinase.
J Biol Chem. 2009 Dec 4;284(49):33789-94. doi: 10.1074/jbc.M109.048983. Epub 2009 Sep 23.
10
Regulation of Smad-mediated gene transcription by RGS3.
Mol Pharmacol. 2008 May;73(5):1356-61. doi: 10.1124/mol.108.044990. Epub 2008 Feb 20.

本文引用的文献

1
RGS16 function is regulated by epidermal growth factor receptor-mediated tyrosine phosphorylation.
J Biol Chem. 2001 Dec 21;276(51):48532-8. doi: 10.1074/jbc.M108862200. Epub 2001 Oct 15.
3
Multiple phosphorylation sites in RGS16 differentially modulate its GAP activity.
FEBS Lett. 2001 Aug 24;504(1-2):16-22. doi: 10.1016/s0014-5793(01)02757-0.
4
Phosphorylation and nuclear translocation of a regulator of G protein signaling (RGS10).
J Biol Chem. 2001 Aug 31;276(35):32828-34. doi: 10.1074/jbc.M100960200. Epub 2001 Jul 6.
6
RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho?
Oncogene. 2001 Mar 26;20(13):1661-8. doi: 10.1038/sj.onc.1204182.
8
14-3-3 proteins: regulation of subcellular localization by molecular interference.
Cell Signal. 2000 Dec;12(11-12):703-9. doi: 10.1016/s0898-6568(00)00131-5.
9
Tyrosine-kinase-dependent recruitment of RGS12 to the N-type calcium channel.
Nature. 2000 Dec 7;408(6813):723-7. doi: 10.1038/35047093.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验