Hoekstra P F, O'Hara T M, Pallant S J, Solomon K R, Muir D C G
Department of Environmental Biology, University of Guelph, ON, Canada.
Arch Environ Contam Toxicol. 2002 May;42(4):497-507. doi: 10.1007/s00244-001-0046-x.
Bowhead whale (Balaena mysticetus) blubber (n = 72) and liver (n = 23) samples were collected during seven consecutive subsistence harvests (1997-2000) at Barrow, Alaska, to investigate the bioaccumulation of organochlorine contaminants (OCs) by this long-lived mysticete. The rank order of OC group concentrations (geometric mean, wet weight) in bowhead blubber samples were toxaphene (TOX; 455 ng/g) > polychlorinated biphenyls (SigmaPCBs; 410 ng/g) > dichlorodiphenyltrichloroethane-related compounds (SigmaDDT; 331 ng/g) >or= hexachlorocyclohexane isomers (SigmaHCHs; 203 ng/g) >or= chlordanes and related isomers (SigmaCHLOR; 183 ng/g) > chlorobenzenes (SigmaCIBz; 106 ng/g). In liver, SigmaHCH (9.5 ng/g; wet weight) was the most abundant SigmaOC group, followed by SigmaPCBs (9.1 ng/g) >or= TOX (8.8 ng/g) > SigmaCHLOR (5.5 ng/g) > SigmaCIBz (4.2 ng/g) >or= SigmaDDT (3.7 ng/g). The dominant analyte in blubber and liver was p,p'-DDE and alpha-HCH, respectively. Total TOX, SigmaPCBs, SigmaDDT, and SigmaCHLOR concentrations in blubber generally increased with age of male whales (as interpreted by body length), but this relationship was not significant for adult female whales. Biomagnification factor (BMF) values (0.1-45.5) for OCs from zooplankton (Calanus sp.) to bowhead whale were consistent with findings for other mysticetes. Tissue-specific differences in OC patterns in blubber and liver may be attributed to variation of tissue composition and the relatively low capacity of this species to biotransform various OCs. Principal component analysis of contaminants levels in bowhead blubber samples suggest that proportions of OCs, such as beta-HCH, fluctuate with seasonal migration of this species between the Bering, Chukchi, and Beaufort Seas.
在阿拉斯加巴罗进行的七次连续自给性捕鲸活动(1997 - 2000年)期间,采集了72份弓头鲸(Balaena mysticetus)的鲸脂样本和23份肝脏样本,以研究这种长寿须鲸体内有机氯污染物(OCs)的生物累积情况。弓头鲸鲸脂样本中OCs组浓度(几何平均值,湿重)的排序为毒杀芬(TOX;455纳克/克)>多氯联苯(ΣPCBs;410纳克/克)>二氯二苯三氯乙烷相关化合物(ΣDDT;331纳克/克)≥六氯环己烷异构体(ΣHCHs;203纳克/克)≥氯丹及其相关异构体(ΣCHLOR;183纳克/克)>氯苯(ΣCIBz;106纳克/克)。在肝脏中,ΣHCH(9.5纳克/克;湿重)是含量最高的ΣOCs组,其次是ΣPCBs(9.1纳克/克)≥TOX(8.8纳克/克)>ΣCHLOR(5.5纳克/克)>ΣCIBz(4.2纳克/克)≥ΣDDT(3.7纳克/克)。鲸脂和肝脏中的主要分析物分别是p,p'-滴滴伊和α-六氯环己烷。雄性鲸鱼鲸脂中总TOX、ΣPCBs、ΣDDT和ΣCHLOR的浓度通常随年龄(以体长表示)增加,但成年雌性鲸鱼不存在这种显著关系。从浮游动物(哲水蚤属)到弓头鲸的OCs生物放大因子(BMF)值(0.1 - 45.5)与其他须鲸的研究结果一致。鲸脂和肝脏中OCs模式的组织特异性差异可能归因于组织组成的变化以及该物种对各种OCs进行生物转化的能力相对较低。对弓头鲸鲸脂样本中污染物水平的主成分分析表明,β-六氯环己烷等OCs的比例会随着该物种在白令海、楚科奇海和波弗特海之间的季节性洄游而波动。