Hoekstra Paul F, O'Hara Todd M, Karlsson Heidi, Solomon Keith R, Muir Derek C
University of Guelph, Department of Environmental Biology, Environment Canada, National Water Research Institute, Burlington, Ontario, Canada.
Environ Toxicol Chem. 2003 Oct;22(10):2482-91. doi: 10.1897/02-459.
Concentrations of achiral and chiral organochlorine contaminants (OCs), including hexachlorocyclohexane isomers (HCH), chlordane congeners (cis- and trans-chlordane, cis- and trans-nonachlor, MC5, MC7, and U82), and related metabolites (oxychlordane [OXY] and heptachlor exo-epoxide [HEPX]), were quantified in seawater (100 L; n = 6) and biota from the coastal Beaufort-Chukchi Seas food web near Barrow (AK, USA). The biota included zooplankton (Calanus spp.; n = 5), fish species such as arctic cod (Boreogadus saida; n = 10), arctic char (Salvelinus alpinus; n = 3), and marine mammals including bowhead whales (Balaena mysticetus; liver: n = 23; blubber: n = 40), beluga whales (Delphinapterus leucas; blubber: n = 20), ringed seals (Phoca hispida; blubber: n = 20), and bearded seals (Erignathus barbatus; blubber: n = 7). The food web magnification factors (FWMFs) for HCHs and chlordane compounds ranged from 0.5 (gamma-HCH) to 6.5 (HEPX) and were expected based on known recalcitrance and biotransformation of OCs. The enantiomer fractions (EFs) of all chiral OCs were near racemic (EF = 0.50) in the seawater, zooplankton, and all fish analyzed. In contrast, the EFs for most OCs analyzed were nonracemic (EF # 0.50) in the marine mammals blubber (range: 0.09-0.79) because of enantiomer-specific biotransformation and (or) accumulation. However, EF values were not significantly correlated with isotopically determined trophic level. The EFs for all chiral OCs (except alpha-HCH) in bowhead whale liver closely approximated the values in zooplankton, suggesting that the accumulation of chiral OCs from prey into this cetacean is not enantiomer specific. However, the modification of EFs from bowhead liver to blubber suggests that this species has the ability to enantioselectively biotransform and accumulate several chiral OC compounds.
对美国阿拉斯加巴罗附近沿海波弗特 - 楚科奇海食物网的海水(100升;n = 6)和生物群中手性和非手性有机氯污染物(OCs)进行了定量分析,这些污染物包括六氯环己烷异构体(HCH)、氯丹同系物(顺式和反式氯丹、顺式和反式九氯、MC5、MC7和U82)以及相关代谢物(氧氯丹[OXY]和七氯环氧物[HEPX])。生物群包括浮游动物(哲水蚤属;n = 5)、鱼类,如北极鳕鱼(Boreogadus saida;n = 10)、北极红点鲑(Salvelinus alpinus;n = 3),以及海洋哺乳动物,包括弓头鲸(Balaena mysticetus;肝脏:n = 23;鲸脂:n = 40)、白鲸(Delphinapterus leucas;鲸脂:n = 20)、环斑海豹(Phoca hispida;鲸脂:n = 20)和髯海豹(Erignathus barbatus;鲸脂:n = 7)。HCHs和氯丹化合物的食物网放大因子(FWMFs)范围从0.5(γ - HCH)到6.5(HEPX),基于已知的OCs难降解性和生物转化作用,这是预期的结果。在分析的海水、浮游动物和所有鱼类中,所有手性OCs的对映体分数(EFs)接近外消旋状态(EF = 0.50)。相比之下,由于对映体特异性生物转化和(或)积累,在海洋哺乳动物的鲸脂中,大多数分析的OCs的EFs是非外消旋的(EF ≠ 0.50)(范围:0.09 - 0.79)。然而,EF值与同位素确定的营养级没有显著相关性。弓头鲸肝脏中所有手性OCs(除α - HCH外)的EF值与浮游动物中的值非常接近,这表明从猎物到这种鲸类动物手中性OCs的积累不是对映体特异性的。然而,从弓头鲸肝脏到鲸脂的EFs变化表明,该物种有能力对映体选择性地生物转化和积累几种手性OC化合物。