Suppr超能文献

周期填充等离子体波导中特里维尔皮斯-古尔德波的分形特性。

Fractal properties of trivelpiece-gould waves in periodic plasma-filled waveguides.

作者信息

Zaginaylov G I, Grudiev A, Schünemann K, Turbin P V

机构信息

Department of Physics and Technology, Kharkov National University, Kharkov, Ukraine.

出版信息

Phys Rev Lett. 2002 May 13;88(19):195005. doi: 10.1103/PhysRevLett.88.195005. Epub 2002 Apr 29.

Abstract

It is shown that dispersion curves describing a spectrum of Trivelpiece-Gould (TG) waves in periodic plasma-filled waveguides have a fractal nature. They are not solid lines as for other types of waves in periodic waveguides but suffer from discontinuities of the first kind at any k(z) = (P/Q) (2m+1)pi/d, where P and Q are integers, d is the period of the corrugation, and m is the transverse index of a mode. The gaps correspond to forbidden bands. The evaluation of the Hausdorf dimension of the dispersion curves is presented. Finally, qualitative consequences of the fractal nature of TG waves for plasma microwave electronics are discussed.

摘要

结果表明,描述周期性填充等离子体波导中特里维尔皮斯-古尔德(TG)波谱的色散曲线具有分形性质。它们不像周期性波导中其他类型的波那样是实线,而是在任何k(z) = (P/Q) (2m + 1)π/d处存在第一类间断,其中P和Q是整数,d是波纹周期,m是模式的横向指数。这些间隙对应于禁带。给出了色散曲线的豪斯多夫维数的评估。最后,讨论了TG波的分形性质对等离子体微波电子学的定性影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验