Suppr超能文献

主要神经元之间的轴突缝隙连接:网络振荡的新来源,或许也是癫痫发生的原因。

Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis.

作者信息

Traub Roger D, Draguhn Andreas, Whittington Miles A, Baldeweg Torsten, Bibbig Andrea, Buhl Eberhard H, Schmitz Dietmar

机构信息

Department of Physiology, SUNY Downstate Medical Center, Brooklyn 11203, USA.

出版信息

Rev Neurosci. 2002;13(1):1-30. doi: 10.1515/revneuro.2002.13.1.1.

Abstract

We hypothesized in 1998 that gap junctions might be located between the axons of principal hippocampal neurons, based on the shape of spikelets (fast prepotentials), occurring during gap junction-mediated very fast (to approximately 200 Hz) network oscillations in vitro. More recent electrophysiological, pharmacological and dye-coupling data indicate that axonal gap junctions exist; so far, they appear to be located about 100 microm from the soma, in CA1 pyramidal neurons. Computer modeling and theory predict that axonal gap junctions can lead to very fast network oscillations under three conditions: a) there are spontaneous axonal action potentials; b) the number of gap junctions in the network is neither too low (not less than to approximately 1.5 per cell on average), nor too high (not more than to approximately 3 per cell on average); c) action potentials can cross from axon to axon via gap junctions. Simulated oscillations resemble biological ones, but condition (c) remains to be demonstrated directly. Axonal network oscillations can, in turn, induce oscillatory activity in larger neuronal networks, by a variety of mechanisms. Axonal networks appear to underlie in vivo ripples (to approximately 200 Hz field potential oscillations superimposed on physiological sharp waves), to drive gamma (30-70 Hz) oscillations that appear in the presence of carbachol, and to initiate certain types of ictal discharge. If axonal gap junctions are important for seizure initiation in humans, there could be practical consequences for antiepileptic therapy: at least one gap junction-blocking compound, carbenoxolone, is already in clinical use (for treatment of ulcer disease), and it crosses the blood-brain barrier.

摘要

1998年我们提出假说,基于在体外缝隙连接介导的非常快速(约200赫兹)的网络振荡期间出现的小棘波(快速预电位)的形状,缝隙连接可能位于海马体主要神经元的轴突之间。最近的电生理、药理学和染料偶联数据表明轴突缝隙连接确实存在;到目前为止,在CA1锥体神经元中,它们似乎位于距胞体约100微米处。计算机建模和理论预测,轴突缝隙连接在三种情况下可导致非常快速的网络振荡:a)存在自发的轴突动作电位;b)网络中缝隙连接的数量既不过低(平均每个细胞不少于约1.5个),也不过高(平均每个细胞不超过约3个);c)动作电位可通过缝隙连接从一个轴突传递到另一个轴突。模拟振荡类似于生物振荡,但条件(c)仍有待直接证明。轴突网络振荡反过来可通过多种机制在更大的神经元网络中诱导振荡活动。轴突网络似乎是体内涟漪(叠加在生理尖波上的约200赫兹场电位振荡)的基础,驱动在卡巴胆碱存在时出现的γ(30 - 70赫兹)振荡,并引发某些类型的发作性放电。如果轴突缝隙连接对人类癫痫发作的起始很重要,那么抗癫痫治疗可能会有实际影响:至少有一种缝隙连接阻断化合物,即甘草次酸,已在临床使用(用于治疗溃疡病),并且它可穿过血脑屏障。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验