Bernheim-Groswasser Anne, Wiesner Sebastian, Golsteyn Roy M, Carlier Marie-France, Sykes Cécile
Laboratoire Physico-chimie 'Curie', UMR 168 CNRS/Institut Curie, 11, rue Pierre et Marie Curie, 75231 Paris cedex 05, France.
Nature. 2002 May 16;417(6886):308-11. doi: 10.1038/417308a.
In cells, actin polymerization at the plasma membrane is induced by the recruitment of proteins such as the Arp2/3 complex, and the zyxin/VASP complex. The physical mechanism of force generation by actin polymerization has been described theoretically using various approaches, but lacks support from experimental data. By the use of reconstituted motility medium, we find that the Wiskott Aldrich syndrome protein (WASP) subdomain, known as VCA, is sufficient to induce actin polymerization and movement when grafted on microspheres. Changes in the surface density of VCA protein or in the microsphere diameter markedly affect the velocity regime, shifting from a continuous to a jerky movement resembling that of the mutated 'hopping' Listeria. These results highlight how simple physical parameters such as surface geometry and protein density directly affect spatially controlled actin polymerization, and play a fundamental role in actin-dependent movement.
在细胞中,质膜上的肌动蛋白聚合是由诸如Arp2/3复合物和zyxin/VASP复合物等蛋白质的募集所诱导的。通过各种方法已从理论上描述了肌动蛋白聚合产生力的物理机制,但缺乏实验数据的支持。通过使用重构的运动介质,我们发现威斯科特-奥尔德里奇综合征蛋白(WASP)的亚结构域(称为VCA),当嫁接到微球上时足以诱导肌动蛋白聚合和运动。VCA蛋白表面密度或微球直径的变化显著影响速度状态,从连续运动转变为类似于突变的“跳跃”李斯特菌的急促运动。这些结果突出了诸如表面几何形状和蛋白质密度等简单物理参数如何直接影响空间控制的肌动蛋白聚合,并在肌动蛋白依赖性运动中发挥基本作用。