Suppr超能文献

白色念珠菌主要葡聚糖相关细胞壁蛋白的鉴定及其在氟康唑耐药中的作用。

Identification of major glucan-associated cell wall proteins of Candida albicans and their role in fluconazole resistance.

作者信息

Angiolella Letizia, Micocci Mia M, D'Alessio Simona, Girolamo Antonietta, Maras Bruno, Cassone Antonio

机构信息

Institute of Microbiology, Faculty of Pharmacy, Rome, Italy.

出版信息

Antimicrob Agents Chemother. 2002 Jun;46(6):1688-94. doi: 10.1128/AAC.46.6.1688-1694.2002.

Abstract

Identification of major glucan-associated proteins (GAPs) of the cell wall of a number of Candida albicans isolates susceptible or resistant to fluconazole (FLC) was addressed by direct sequencing of the protein bands resolved by unidimensional gel electrophoresis. Changes in the GAP compositions of the different strains grown in the presence of the drug were also investigated. In the FLC-susceptible strains, the major (more abundant) GAPs were enolase (46 kDa), two isoforms of phosphoglyceromutase (32 and 29 kDa), and two beta-(1-3)-exoglucanases (44 and 34 kDa), one of which (the 34-kDa component) was glycosylated. When these strains were grown in the presence of FLC there were substantial decreases in the intensities of the two enzymes of the glycolytic pathway (enolase and the phosphoglyceromutases), which were apparently replaced by enhancement of the exoglucanase constituents, particularly the 44-kDa one. This GAP pattern closely mimicked that observed in the FLC-resistant strains whether they were grown in the presence or in the absence of the drug. Both the enolase and the exoglucanase constituents were detected in the culture supernatants of FLC-treated cells, together with substantial amounts of highly glycosylated, probably mannoprotein secretory material, suggesting that FLC may cause marked alterations of GAP incorporation into the cell wall. Altogether, we were able to identify all major GAP constituents and monitor their distributions in the cell wall of C. albicans during treatment with FLC. The near equivalence of the GAP profile for the FLC-susceptible strain grown in the presence of FLC to that for the FLC-resistant strain suggests that the effects of the drug on GAPs may be stably incorporated into the cell wall of the fungus upon acquisition of resistance.

摘要

通过对一维凝胶电泳分离的蛋白条带进行直接测序,确定了一些对氟康唑(FLC)敏感或耐药的白色念珠菌分离株细胞壁中的主要葡聚糖相关蛋白(GAPs)。还研究了在药物存在下生长的不同菌株GAP组成的变化。在FLC敏感菌株中,主要(含量更高)的GAPs是烯醇化酶(46 kDa)、磷酸甘油变位酶的两种同工型(32和29 kDa)以及两种β-(1-3)-外切葡聚糖酶(44和34 kDa),其中一种(34 kDa组分)是糖基化的。当这些菌株在FLC存在下生长时,糖酵解途径的两种酶(烯醇化酶和磷酸甘油变位酶)的强度大幅下降,显然被外切葡聚糖酶成分的增强所取代,特别是44 kDa的那种。这种GAP模式与在FLC耐药菌株中观察到的模式非常相似,无论它们是在药物存在还是不存在的情况下生长。在FLC处理细胞的培养上清液中检测到了烯醇化酶和外切葡聚糖酶成分,以及大量高度糖基化的、可能是甘露糖蛋白的分泌物质,这表明FLC可能会导致GAP掺入细胞壁的显著改变。总之,我们能够识别所有主要的GAP成分,并监测它们在白色念珠菌细胞壁中在FLC处理期间的分布。在FLC存在下生长的FLC敏感菌株的GAP谱与FLC耐药菌株的GAP谱几乎相当,这表明药物对GAPs的影响可能在获得耐药性时稳定地掺入真菌细胞壁中。

相似文献

1
Identification of major glucan-associated cell wall proteins of Candida albicans and their role in fluconazole resistance.
Antimicrob Agents Chemother. 2002 Jun;46(6):1688-94. doi: 10.1128/AAC.46.6.1688-1694.2002.
4
Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and -resistant Candida albicans.
J Med Microbiol. 2009 Aug;58(Pt 8):1074-1079. doi: 10.1099/jmm.0.008052-0. Epub 2009 Jun 15.
5
Mechanism of action of tetrandrine, a natural inhibitor of Candida albicans drug efflux pumps.
Yakugaku Zasshi. 2009 May;129(5):623-30. doi: 10.1248/yakushi.129.623.
6
Proteomic analysis reveals a metabolism shift in a laboratory fluconazole-resistant Candida albicans strain.
J Proteome Res. 2007 Jun;6(6):2248-56. doi: 10.1021/pr060656c. Epub 2007 Apr 14.
9
Molecular mechanisms underlying the tetrandrine-mediated reversal of the fluconazole resistance of Candida albicans.
Pharm Biol. 2013 Jun;51(6):749-52. doi: 10.3109/13880209.2013.764537. Epub 2013 Mar 25.
10
Antifungal activity of ribavirin used alone or in combination with fluconazole against Candida albicans is mediated by reduced virulence.
Int J Antimicrob Agents. 2020 Jan;55(1):105804. doi: 10.1016/j.ijantimicag.2019.09.008. Epub 2019 Oct 9.

引用本文的文献

2
Hyperexpression of CDRs and HWP1 genes negatively impacts on Candida albicans virulence.
PLoS One. 2021 Jun 1;16(6):e0252555. doi: 10.1371/journal.pone.0252555. eCollection 2021.
5
Fluconazole Resistance Candida albicans in Females With Recurrent Vaginitis and Pir1 Overexpression.
Jundishapur J Microbiol. 2015 Sep 23;8(9):e21468. doi: 10.5812/jjm.21468. eCollection 2015 Sep.
6
Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence.
J Microbiol. 2013 Jun;51(3):345-51. doi: 10.1007/s12275-013-2577-z. Epub 2013 Jun 28.
7
The potential impact of antifungal drug resistance mechanisms on the host immune response to Candida.
Virulence. 2012 Jul 1;3(4):368-76. doi: 10.4161/viru.20746. Epub 2012 Jun 22.
8
A screening assay based on host-pathogen interaction models identifies a set of novel antifungal benzimidazole derivatives.
Antimicrob Agents Chemother. 2011 Oct;55(10):4789-801. doi: 10.1128/AAC.01657-10. Epub 2011 Jul 11.
9
Effect of Saccharomyces cerevisiae ret1-1 mutation on glycosylation and localization of the secretome.
Mol Cells. 2011 Feb;31(2):151-8. doi: 10.1007/s10059-011-0012-z. Epub 2010 Nov 25.
10
Candida albicans virulence and drug-resistance requires the O-acyltransferase Gup1p.
BMC Microbiol. 2010 Sep 15;10:238. doi: 10.1186/1471-2180-10-238.

本文引用的文献

3
Influence of fluconazole at subinhibitory concentrations on cell surface hydrophobicity and phagocytosis of Candida albicans.
FEMS Microbiol Lett. 2000 Feb 1;183(1):89-94. doi: 10.1111/j.1574-6968.2000.tb08938.x.
4
Enolase is present in the cell wall of Saccharomyces cerevisiae.
FEMS Microbiol Lett. 1999 Aug 15;177(2):211-6. doi: 10.1111/j.1574-6968.1999.tb13734.x.
6
Hydrolase and transferase activities of the beta-1,3-exoglucanase of Candida albicans.
Eur J Biochem. 1999 Aug;263(3):889-95. doi: 10.1046/j.1432-1327.1999.00581.x.
7
The contribution of cell wall proteins to the organization of the yeast cell wall.
Biochim Biophys Acta. 1999 Jan 6;1426(2):373-83. doi: 10.1016/s0304-4165(98)00137-8.
8
Cell wall and secreted proteins of Candida albicans: identification, function, and expression.
Microbiol Mol Biol Rev. 1998 Mar;62(1):130-80. doi: 10.1128/MMBR.62.1.130-180.1998.
9
3-phosphoglycerate kinase: a glycolytic enzyme protein present in the cell wall of Candida albicans.
Microbiology (Reading). 1997 Feb;143 ( Pt 2):321-330. doi: 10.1099/00221287-143-2-321.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验