Suppr超能文献

从大规模数据库中汲取的早期前列腺癌经验教训:基于人群的智慧结晶。

Lessons learnt about early prostate cancer from large scale databases: population-based pearls of wisdom.

作者信息

Penson David F, Albertsen Peter C

机构信息

University of Washington, Seattle, WA 98106, USA.

出版信息

Surg Oncol. 2002 Jun;11(1-2):3-11. doi: 10.1016/s0960-7404(02)00009-9.

Abstract

Prostate cancer is one of most common solid tumors in men and poses some of the most difficult problems in clinical research. Although many clinical research hypotheses in this condition have been explored using single center cases series and multi-center clinical trials, the results of these studies have often been equivocal, leaving many questions unanswered. Recently, investigators have utilized large, administrative datasets for prostate cancer research. These databases tend to include large numbers of patients from different geographic regions increasing their generalizability and statistical power. The goal of this report is to review lessons learnt about early prostate cancer using these data sources. In particular, we focus on the application of large, population-based datasets to address issues concerning the natural history of prostate cancer, the impact of race on outcomes in prostate cancer and the effectiveness of various treatments for localized disease. Information gathered from large, administrative databases will be helpful when counseling patients regarding their treatments options for localized prostate cancer and in identifying future directions for prostate cancer research.

摘要

前列腺癌是男性最常见的实体肿瘤之一,也是临床研究中最难解决的问题之一。尽管针对这种情况的许多临床研究假设已通过单中心病例系列和多中心临床试验进行了探索,但这些研究结果往往模棱两可,留下了许多未解答的问题。最近,研究人员利用大型管理数据集进行前列腺癌研究。这些数据库往往包含来自不同地理区域的大量患者,从而提高了其普遍性和统计效力。本报告的目的是回顾利用这些数据源在早期前列腺癌方面所学到的经验教训。特别是,我们重点关注基于人群的大型数据集在解决前列腺癌自然史、种族对前列腺癌结局的影响以及各种局部疾病治疗方法的有效性等问题上的应用。从大型管理数据库收集的信息在为患者提供有关局部前列腺癌治疗选择的咨询以及确定前列腺癌研究的未来方向时将很有帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验