Manning Suzanne K, Woodrow Charles, Zuniga Felipe A, Iserovich Pavel, Fischbarg Jorge, Louw Abraham I, Krishna Sanjeev
Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa.
J Biol Chem. 2002 Aug 23;277(34):30942-9. doi: 10.1074/jbc.M204337200. Epub 2002 May 31.
Plasmodium falciparum infection kills more than 1 million children annually. Novel drug targets are urgently being sought as multidrug resistance limits the range of treatment options for this protozoan pathogen. PfHT1, the major hexose transporter of P. falciparum is a promising new target. We report detailed structure-function studies on PfHT1 using site-directed mutagenesis approaches on residues located in helix V (Q169N) and helix VII ((302)SGL --> AGT). Studies with hexose analogues in these mutants have established that hexose recognition and permeation are intimately linked to these helices. A "fructose filter" effect results from the Q169N mutation (abolishing fructose uptake but preserving affinity and transport of glucose, as reported in Woodrow, C. J., Burchmore, R. J. S., and Krishna, S. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 9931-9936). Associated changes in competition for glucose uptake by C-2, C-3, and C-6 glucose analogues compared with native PfHT1 indicate subtle alterations in substrate interaction in this mutant. The K(m) values for glucose uptake in helix VII mutants are also similar to native PfHT1. Hydrogen bonding to positions C-5 and C-6 in glucose analogues becomes relatively more important in these mutants compared with native PfHT1. To increase understanding of hexose permeation pathways in PfHT1, we have developed the first three-dimensional model for PfHT1. As predicted for GLUT1, the principal mammalian glucose transporter, PfHT1 contains a main and an auxiliary channel. After modeling, the Q169N mutation leads predominantly to local structural changes, including displacement of neighboring helix IV. The (302)SGL position in helix VII lies in the same plane as Gln-169 in helix V but is also adjacent to the main hexose permeation pathway, consistent with results from experiments mutating this triplet motif. Furthermore, there are obvious structural and functional differences between GLUT1 and PfHT1 that can now be explored in detail using the approaches presented here. The development of specific inhibitors for PfHT1 will also be aided by these insights.
恶性疟原虫感染每年导致超过100万儿童死亡。由于多重耐药性限制了这种原生动物病原体的治疗选择范围,因此迫切需要寻找新的药物靶点。PfHT1是恶性疟原虫的主要己糖转运蛋白,是一个很有前景的新靶点。我们报告了对PfHT1进行的详细结构 - 功能研究,采用定点诱变方法作用于位于螺旋V(Q169N)和螺旋VII((302)SGL --> AGT)的残基。对这些突变体中己糖类似物的研究表明,己糖识别和通透与这些螺旋密切相关。Q169N突变产生了一种“果糖过滤器”效应(如伍德罗等人在《美国国家科学院院刊》2000年第97卷第9931 - 9936页所报道,消除了果糖摄取但保留了葡萄糖的亲和力和转运)。与天然PfHT1相比,C - 2、C - 3和C - 6葡萄糖类似物对葡萄糖摄取竞争的相关变化表明该突变体中底物相互作用存在细微改变。螺旋VII突变体中葡萄糖摄取的K(m)值也与天然PfHT1相似。与天然PfHT1相比,在这些突变体中与葡萄糖类似物的C - 5和C - 6位置形成氢键变得相对更为重要。为了增进对PfHT1中己糖通透途径的理解,我们构建了PfHT1的首个三维模型。正如对主要的哺乳动物葡萄糖转运蛋白GLUT1所预测的那样,PfHT1包含一个主要通道和一个辅助通道。建模后,Q169N突变主要导致局部结构变化,包括相邻螺旋IV的位移。螺旋VII中的(302)SGL位置与螺旋V中的Gln - 169位于同一平面,但也与主要的己糖通透途径相邻,这与对该三联体基序进行突变的实验结果一致。此外,GLUT1和PfHT1之间存在明显的结构和功能差异,现在可以使用本文介绍的方法进行详细探究。这些见解也将有助于开发针对PfHT1的特异性抑制剂。