Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, School of Pharmaceutical Sciences, Tsinghua University,100084 Beijing, China.
Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084 Beijing, China.
Proc Natl Acad Sci U S A. 2021 Jan 19;118(3). doi: 10.1073/pnas.2017749118.
Artemisinin-resistant malaria parasites have emerged and have been spreading, posing a significant public health challenge. Antimalarial drugs with novel mechanisms of action are therefore urgently needed. In this report, we exploit a "selective starvation" strategy by inhibiting hexose transporter 1 (PfHT1), the sole hexose transporter in , over human glucose transporter 1 (hGLUT1), providing an alternative approach to fight against multidrug-resistant malaria parasites. The crystal structure of hGLUT3, which shares 80% sequence similarity with hGLUT1, was resolved in complex with C3361, a moderate PfHT1-specific inhibitor, at 2.3-Å resolution. Structural comparison between the present hGLUT3-C3361 and our previously reported PfHT1-C3361 confirmed the unique inhibitor binding-induced pocket in PfHT1. We then designed small molecules to simultaneously block the orthosteric and allosteric pockets of PfHT1. Through extensive structure-activity relationship studies, the TH-PF series was identified to selectively inhibit PfHT1 over hGLUT1 and potent against multiple strains of the blood-stage Our findings shed light on the next-generation chemotherapeutics with a paradigm-shifting structure-based design strategy to simultaneously target the orthosteric and allosteric sites of a transporter.
青蒿素耐药疟原虫已经出现并正在传播,这对公共卫生构成了重大挑战。因此,迫切需要具有新型作用机制的抗疟药物。在本报告中,我们利用“选择性饥饿”策略,抑制 中的唯一己糖转运蛋白 1 (PfHT1),而不是人葡萄糖转运蛋白 1 (hGLUT1),为对抗多药耐药疟原虫提供了一种替代方法。与 hGLUT1 具有 80%序列相似性的 hGLUT3 的晶体结构与中度 PfHT1 特异性抑制剂 C3361 复合物的分辨率为 2.3-Å。目前 hGLUT3-C3361 与我们之前报道的 PfHT1-C3361 之间的结构比较证实了 PfHT1 中独特的抑制剂结合诱导口袋。然后,我们设计了小分子来同时阻断 PfHT1 的正位和变构口袋。通过广泛的构效关系研究,确定了 TH-PF 系列能够选择性地抑制 PfHT1 而不是 hGLUT1,并且对多种血期疟原虫菌株均有效。我们的研究结果为新一代化学疗法提供了启示,这种化学疗法采用了改变范式的基于结构的设计策略,能够同时靶向转运蛋白的正位和变构位点。