Rooman Marianne, Liévin Jacky, Buisine Eric, Wintjens René
Ingénierie Biomoléculaire - CP 165/64, Université Libre de Bruxelles, 50 avenue Roosevelt, B-1050 Bruxelles, Belgium.
J Mol Biol. 2002 May 24;319(1):67-76. doi: 10.1016/s0022-2836(02)00263-2.
H-bonds and cation-pi interactions between nucleic acid bases and amino acid side-chains are known to occur often concomitantly at the interface between protein and double-stranded DNA. Here we define and analyze stair-shaped motifs, which simultaneously involve base stacking, H-bond and cation-pi interactions. They consist of two successive bases along the DNA stack, one in cation-pi interaction with an amino acid side-chain that carries a total or partial positive charge, and the other H-bonded with the same side-chain. A survey of 52 high-resolution structures of protein/DNA complexes reveals the occurrence of such motifs in the majority of the complexes, the most frequent of these motifs involving Arg side-chains and G bases. These stair motifs are sometimes part of larger motifs, called multiple stair motifs, which contain several successive stairs; zinc finger proteins for example exhibit up to quadruple stairs. In another kind of stair motif extension, termed cation-pi chain motif, an amino acid side-chain or a nucleic acid base forms simultaneously two cation-pi interactions. Such a motif is observed in several homeodomains, where it involves a DNA base in cation-pi interactions with an Arg in the minor groove and an Asn in the major groove. A different cation-pi chain motif contains an Arg in cation-pi with a G and a Tyr, and is found in ets transcription factors. Still another chain motif is encountered in proteins that expulse a base from the DNA stack and replace it by an amino acid side-chain carrying a net or partial positive charge, which forms cation-pi interactions with the two neighboring bases along the DNA strand. The striking conservation of typical stair and cation-pi chain motifs within families of protein/DNA complexes suggests that they might play a structural and/or functional role and might moreover influence electron migration through the DNA double helix.
已知核酸碱基与氨基酸侧链之间的氢键和阳离子-π相互作用经常同时出现在蛋白质与双链DNA的界面处。在这里,我们定义并分析了阶梯状基序,其同时涉及碱基堆积、氢键和阳离子-π相互作用。它们由沿着DNA堆积的两个连续碱基组成,一个与带有全部或部分正电荷的氨基酸侧链形成阳离子-π相互作用,另一个与同一侧链形成氢键。对52个蛋白质/DNA复合物高分辨率结构的调查显示,大多数复合物中都存在这种基序,其中最常见的基序涉及精氨酸侧链和鸟嘌呤碱基。这些阶梯基序有时是更大基序(称为多重阶梯基序)的一部分,多重阶梯基序包含几个连续的阶梯;例如,锌指蛋白最多可呈现四重阶梯。在另一种阶梯基序扩展形式(称为阳离子-π链基序)中,一个氨基酸侧链或一个核酸碱基同时形成两个阳离子-π相互作用。在几个同源结构域中观察到了这样的基序,其中它涉及一个DNA碱基在小沟中与一个精氨酸以及在大沟中与一个天冬酰胺形成阳离子-π相互作用。另一种不同的阳离子-π链基序包含一个与鸟嘌呤和一个酪氨酸形成阳离子-π相互作用的精氨酸,并且在Ets转录因子中被发现。在一些蛋白质中还遇到了另一种链基序,这些蛋白质将一个碱基从DNA堆积中排出,并用一个带有净正电荷或部分正电荷的氨基酸侧链取代它,该侧链与沿着DNA链的两个相邻碱基形成阳离子-π相互作用。蛋白质/DNA复合物家族中典型阶梯和阳离子-π链基序的显著保守性表明,它们可能发挥结构和/或功能作用,而且可能影响电子通过DNA双螺旋的迁移。