Suppr超能文献

伴放线放线杆菌中的自然转化与DNA摄取信号序列

Natural transformation and DNA uptake signal sequences in Actinobacillus actinomycetemcomitans.

作者信息

Wang Ying, Goodman Steve D, Redfield Rosemary J, Chen Casey

机构信息

University of Southern California School of Dentistry, Los Angeles, California 90089, USA.

出版信息

J Bacteriol. 2002 Jul;184(13):3442-9. doi: 10.1128/JB.184.13.3442-3449.2002.

Abstract

Actinobacillus actinomycetemcomitans is a member of the family Pasteurellaceae and a major causative agent of periodontitis. While several genera from this family are known to be competent for transformation, A. actinomycetemcomitans has yet to be fully characterized. Here we show that the competence of A. actinomycetemcomitans is remarkably similar to that of Haemophilus influenzae. In addition to having a similar frequency of transformation as H. influenzae, A. actinomycetemcomitans competence could also be induced at least 100-fold by cyclic AMP, suggesting that, as in H. influenzae, at least some competence genes are regulated by catabolite repression. Even more intriguing was the discovery of a putative A. actinomycetemcomitans DNA uptake signal sequence (USS) virtually identical to the USS of H. influenzae. Moreover, we provide evidence that this sequence functions in the same capacity as that from H. influenzae; the sequence appears to be required and sufficient for DNA uptake in a variety of assays. Finally, we have taken advantage of this system to develop a simple, highly efficient competence-based method for generating site-directed mutations in the wild-type fimbriated A. actinomycetemcomitans.

摘要

伴放线放线杆菌是巴斯德菌科的成员,也是牙周炎的主要病原体。虽然已知该科的几个属具有转化能力,但伴放线放线杆菌尚未得到充分表征。在此我们表明,伴放线放线杆菌的感受态与流感嗜血杆菌的感受态非常相似。除了与流感嗜血杆菌具有相似的转化频率外,伴放线放线杆菌的感受态还可被环磷酸腺苷诱导至少100倍,这表明,与流感嗜血杆菌一样,至少一些感受态基因受分解代谢物阻遏调控。更有趣的是,发现了一个假定的伴放线放线杆菌DNA摄取信号序列(USS),它与流感嗜血杆菌的USS几乎相同。此外,我们提供的证据表明,该序列的功能与流感嗜血杆菌的序列相同;在各种试验中,该序列似乎是DNA摄取所必需的且足够了。最后,我们利用这个系统开发了一种简单、高效的基于感受态的方法,用于在野生型有菌毛的伴放线放线杆菌中产生定点突变。

相似文献

1
Natural transformation and DNA uptake signal sequences in Actinobacillus actinomycetemcomitans.
J Bacteriol. 2002 Jul;184(13):3442-9. doi: 10.1128/JB.184.13.3442-3449.2002.
2
Genomic distribution and functions of uptake signal sequences in Actinobacillus actinomycetemcomitans.
Microbiology (Reading). 2006 Nov;152(Pt 11):3319-3325. doi: 10.1099/mic.0.29018-0.
3
Evolution of competence and DNA uptake specificity in the Pasteurellaceae.
BMC Evol Biol. 2006 Oct 12;6:82. doi: 10.1186/1471-2148-6-82.
4
tfoX (sxy)-dependent transformation of Aggregatibacter (Actinobacillus) actinomycetemcomitans.
Gene. 2007 Sep 1;399(1):53-64. doi: 10.1016/j.gene.2007.04.026. Epub 2007 May 1.
5
Clonal distribution of natural competence in Actinobacillus actinomycetemcomitans.
Oral Microbiol Immunol. 2004 Oct;19(5):340-2. doi: 10.1111/j.1399-302x.2004.00157.x.
7
The Haemophilus influenzae adenylate cyclase gene: cloning, sequence, and essential role in competence.
J Bacteriol. 1993 Nov;175(22):7142-9. doi: 10.1128/jb.175.22.7142-7149.1993.
8
Transformation of Actinobacillus actinomycetemcomitans by electroporation, utilizing constructed shuttle plasmids.
Infect Immun. 1991 Dec;59(12):4621-7. doi: 10.1128/iai.59.12.4621-4627.1991.
9
Cloning and sequencing of part of the S10 operon from Actinobacillus actinomycetemcomitans FDC Y4.
Oral Microbiol Immunol. 1997 Jun;12(3):174-7. doi: 10.1111/j.1399-302x.1997.tb00375.x.
10
Evolutionary stability of DNA uptake signal sequences in the Pasteurellaceae.
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4513-8. doi: 10.1073/pnas.0306366101. Epub 2004 Mar 19.

引用本文的文献

2
Zebrafish larvae as a model for studying the impact of oral bacterial vesicles on tumor cell growth and metastasis.
Hum Cell. 2024 Nov;37(6):1696-1705. doi: 10.1007/s13577-024-01114-6. Epub 2024 Aug 13.
4
Bacterial symbionts in oral niche use type VI secretion nanomachinery for fitness increase against pathobionts.
iScience. 2024 Mar 29;27(5):109650. doi: 10.1016/j.isci.2024.109650. eCollection 2024 May 17.
5
Basic Characterization of Natural Transformation in Avibacterium paragallinarum.
Microbiol Spectr. 2023 Jun 15;11(3):e0520922. doi: 10.1128/spectrum.05209-22. Epub 2023 May 22.
7
Genomic Islands Shape the Genetic Background of Both JP2 and Non-JP2 .
Pathogens. 2022 Sep 13;11(9):1037. doi: 10.3390/pathogens11091037.
8
Connections between Exoproteome Heterogeneity and Virulence in the Oral Pathogen Aggregatibacter actinomycetemcomitans.
mSystems. 2022 Jun 28;7(3):e0025422. doi: 10.1128/msystems.00254-22. Epub 2022 Jun 13.
9
Outer Membrane Proteins 29 and 29 Paralogue Induce Evasion of Immune Response.
Front Oral Health. 2022 Feb 3;3:835902. doi: 10.3389/froh.2022.835902. eCollection 2022.
10
LPS binds human interleukin-8.
J Oral Microbiol. 2018 Nov 30;11(1):1549931. doi: 10.1080/20002297.2018.1549931. eCollection 2019.

本文引用的文献

1
DNA as a nutrient: novel role for bacterial competence gene homologs.
J Bacteriol. 2001 Nov;183(21):6288-93. doi: 10.1128/JB.183.21.6288-6293.2001.
2
Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil.
Appl Environ Microbiol. 2001 Jun;67(6):2617-21. doi: 10.1128/AEM.67.6.2617-2621.2001.
4
Regulation of competence development in Haemophilus influenzae.
J Theor Biol. 2000 Dec 7;207(3):349-59. doi: 10.1006/jtbi.2000.2179.
5
Identification of periodontal pathogens in atheromatous plaques.
J Periodontol. 2000 Oct;71(10):1554-60. doi: 10.1902/jop.2000.71.10.1554.
6
Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea.
J Bacteriol. 2000 Nov;182(21):6169-76. doi: 10.1128/JB.182.21.6169-6176.2000.
8
DNA uptake in bacteria.
Annu Rev Microbiol. 1999;53:217-44. doi: 10.1146/annurev.micro.53.1.217.
9
Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in nonoral infections.
Periodontol 2000. 1999 Jun;20:122-35. doi: 10.1111/j.1600-0757.1999.tb00160.x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验