Travert Arnaud, Nakamura Hiroyuki, van Santen Rutger A, Cristol Sylvain, Paul Jean-François, Payen Edmond
Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
J Am Chem Soc. 2002 Jun 19;124(24):7084-95. doi: 10.1021/ja011634o.
Hydrogen adsorption on Mo[bond]S, Co[bond]Mo[bond]S, and Ni[bond]Mo[bond]S (10 1 macro 0) surfaces has been modeled by means of periodic DFT calculations taking into account the gaseous surrounding of these catalysts in working conditions. On the stable Mo[bond]S surface, only six-fold coordinated Mo cations are present, whereas substitution by Co or Ni leads to the creation of stable coordinatively unsaturated sites. On the stable MoS(2) surface, hydrogen dissociation is always endothermic and presents a high activation barrier. On Co[bond]Mo[bond]S surfaces, the ability to dissociate H(2) depends on the nature of the metal atom and the sulfur coordination environment. As an adsorption center, Co strongly favors molecular hydrogen activation as compared to the Mo atoms. Co also increases the ability of its sulfur atom ligands to bind hydrogen. Investigation of surface acidity using ammonia as a probe molecule confirms the crucial role of sulfur basicity on hydrogen activation on these surfaces. As a result, Co[bond]Mo[bond]S surfaces present Co[bond]S sites for which the dissociation of hydrogen is exothermic and weakly activated. On Ni[bond]Mo[bond]S surfaces, Ni[bond]S pairs are not stable and do not provide for an efficient way for hydrogen activation. These theoretical results are in good agreement with recent experimental studies of H(2)[bond]D(2) exchange reactions.
通过周期性密度泛函理论计算,考虑到这些催化剂在工作条件下的气态环境,对氢气在Mo[键]S、Co[键]Mo[键]S和Ni[键]Mo[键]S(10 1宏观0)表面的吸附进行了模拟。在稳定的Mo[键]S表面,仅存在六配位的Mo阳离子,而用Co或Ni取代会导致形成稳定的配位不饱和位点。在稳定的MoS(2)表面,氢解离始终是吸热的,且具有较高的活化能垒。在Co[键]Mo[键]S表面,解离H(2)的能力取决于金属原子的性质和硫的配位环境。作为吸附中心,与Mo原子相比,Co强烈有利于分子氢的活化。Co还提高了其硫原子配体结合氢的能力。使用氨作为探针分子研究表面酸度证实了硫碱度在这些表面上氢活化中的关键作用。结果,Co[键]Mo[键]S表面存在Co[键]S位点,其氢解离是放热的且活化较弱。在Ni[键]Mo[键]S表面,Ni[键]S对不稳定,不能提供有效的氢活化途径。这些理论结果与最近关于H(2)[键]D(2)交换反应的实验研究结果非常吻合。