Luczka J, Niemiec M, Rudnicki R
Institute of Physics, University of Silesia, 40-007 Katowice, Poland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051401. doi: 10.1103/PhysRevE.65.051401. Epub 2002 May 8.
A model of the spherical (compact) growth process controlled by a fluctuating local convective velocity field of the fluid particles is introduced. It is assumed that the particle velocity fluctuations are purely noisy, Gaussian, of zero mean, and of various correlations: Dirac delta, exponential, and algebraic (power law). It is shown that for a large class of the velocity fluctuations, the long-time asymptotics of the growth kinetics is universal (i.e., it does not depend on the details of the statistics of fluctuations) and displays the power-law time dependence with the classical exponent 1/2 resembling the diffusion limited growth. For very slow decay of algebraic correlations of fluctuations asymptotically like t(-gamma), gamma in (0,1]), kinetics is anomalous and depends strongly on the exponent gamma. For the averaged radius of the crystal <R(t)> approximately t(1-gamma/2) for 0<gamma<1 or <R(t)> approximately (t ln t)1/2 for gamma=1.
介绍了一种由流体粒子波动的局部对流速度场控制的球形(致密)生长过程模型。假设粒子速度波动是纯噪声的、高斯分布的、均值为零且具有各种相关性:狄拉克δ函数、指数函数和代数函数(幂律)。结果表明,对于一大类速度波动,生长动力学的长时间渐近性是通用的(即,它不依赖于波动统计的细节),并显示出具有经典指数1/2的幂律时间依赖性,类似于扩散限制生长。对于波动的代数相关性非常缓慢地渐近衰减,如t^(-γ),γ∈(0,1],动力学是反常的,并且强烈依赖于指数γ。对于晶体的平均半径<R(t)>,当0<γ<1时,<R(t)>≈t^(1 - γ/2);当γ = 1时,<R(t)>≈(t ln t)^(1/2)。