Suppr超能文献

论蛋白质晶体形成作为一种具有原型离子通道效应的界面控制过程。

On the protein crystal formation as an interface-controlled process with prototype ion-channeling effect.

作者信息

Siódmiak Jacek, Uher Jan J, Santamaría-Holek Ivan, Kruszewska Natalia, Gadomski Adam

机构信息

Department of Modeling of Physicochemical Processes, Institute of Mathematics and Physics, University of Technology and Life Sciences, 85-796 Bydgoszcz, Poland.

出版信息

J Biol Phys. 2007 Aug;33(4):313-29. doi: 10.1007/s10867-008-9076-1. Epub 2008 May 29.

Abstract

A superdiffusive random-walk action in the depletion zone around a growing protein crystal is considered. It stands for a dynamic boundary condition of the growth process and competes steadily with a quasistatic, curvature-involving (thermodynamic) free boundary condition, both of them contributing to interpret the (mainly late-stage) growth process in terms of a prototype ion-channeling effect. An overall diffusion function contains quantitative signatures of both boundary conditions mentioned and indicates whether the new phase grows as an orderly phase or a converse scenario occurs. This situation can be treated in a quite versatile way both numerically and analytically, within a generalized Smoluchowski framework. This study can help in (1) elucidating some dynamic puzzles of a complex crystal formation vs biomolecular aggregation, also those concerning ion-channel formation, and (2) seeing how ion-channel-type dynamics of non-Markovian nature may set properly the pace of model (dis)ordered protein aggregation.

摘要

考虑了在生长的蛋白质晶体周围的耗尽区中的超扩散随机游走行为。它代表了生长过程的动态边界条件,并与准静态、涉及曲率的(热力学)自由边界条件持续竞争,这两种条件都有助于从原型离子通道效应的角度解释(主要是后期的)生长过程。一个整体扩散函数包含上述两种边界条件的定量特征,并表明新相是作为有序相生长还是出现相反的情况。在广义的斯莫卢霍夫斯基框架内,可以通过数值和解析的方式以相当通用的方法处理这种情况。这项研究有助于:(1)阐明复杂晶体形成与生物分子聚集的一些动态难题,以及与离子通道形成有关的难题;(2)了解非马尔可夫性质的离子通道型动力学如何恰当地设定模型(无序)蛋白质聚集的速度。

相似文献

1
On the protein crystal formation as an interface-controlled process with prototype ion-channeling effect.
J Biol Phys. 2007 Aug;33(4):313-29. doi: 10.1007/s10867-008-9076-1. Epub 2008 May 29.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Numerical model of protein crystal growth in a diffusive field such as the microgravity environment.
J Synchrotron Radiat. 2013 Nov;20(Pt 6):1003-9. doi: 10.1107/S0909049513022784. Epub 2013 Oct 1.
5
Numerical analysis of the depletion zone formation around a growing protein crystal.
Ann N Y Acad Sci. 2004 Nov;1027:10-9. doi: 10.1196/annals.1324.002.
6
Diffusional channeling in the sulfate-activating complex: combined continuum modeling and coarse-grained brownian dynamics studies.
Biophys J. 2008 Nov 15;95(10):4659-67. doi: 10.1529/biophysj.108.140038. Epub 2008 Aug 8.
7
The nature of ion and water barrier crossings in a simulated ion channel.
Biophys J. 1993 Jan;64(1):98-109. doi: 10.1016/S0006-3495(93)81344-4.
8
Markovian embedding of non-Markovian superdiffusion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011136. doi: 10.1103/PhysRevE.81.011136. Epub 2010 Jan 27.
10
On the spherical prototype of a complex dissipative late-stage formation seen in terms of least action Vojta-Natanson principle.
Biosystems. 2008 Dec;94(3):242-7. doi: 10.1016/j.biosystems.2008.06.011. Epub 2008 Jul 31.

引用本文的文献

2
Heavy-tailed prediction error: a difficulty in predicting biomedical signals of 1/f noise type.
Comput Math Methods Med. 2012;2012:291510. doi: 10.1155/2012/291510. Epub 2012 Dec 5.
3
Biological physics in México: Review and new challenges.
J Biol Phys. 2011 Mar;37(2):167-84. doi: 10.1007/s10867-011-9218-8. Epub 2011 Feb 11.

本文引用的文献

1
Some features of soft matter systems.
Soft Matter. 2005 Oct 21;1(5):329-333. doi: 10.1039/b509105e.
2
Thermokinetic approach of single particles and clusters involving anomalous diffusion under viscoelastic response.
J Phys Chem B. 2007 Mar 8;111(9):2293-8. doi: 10.1021/jp0675375. Epub 2007 Feb 10.
3
Evaporation of a sub-micrometer droplet.
J Phys Chem B. 2005 Jun 9;109(22):11367-72. doi: 10.1021/jp0443409.
4
From surface self-assembly to crystallization: prediction of protein crystallization conditions.
J Phys Chem B. 2006 Apr 6;110(13):6949-55. doi: 10.1021/jp0536089.
5
Pattern formation and fluctuation-induced transitions in protein crystallization.
J Chem Phys. 2004 Apr 22;120(16):7708-19. doi: 10.1063/1.1687339.
6
Origin of 1/f(alpha) noise in membrane channel currents.
Phys Rev Lett. 2002 Oct 7;89(15):158101. doi: 10.1103/PhysRevLett.89.158101. Epub 2002 Sep 20.
7
Kinetics of growth process controlled by convective fluctuations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051401. doi: 10.1103/PhysRevE.65.051401. Epub 2002 May 8.
8
Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel.
Phys Rev Lett. 2000 Jul 3;85(1):202-5. doi: 10.1103/PhysRevLett.85.202.
9
Determining the molecular-packing arrangements on protein crystal faces by atomic force microscopy.
Acta Crystallogr D Biol Crystallogr. 1999 May;55(Pt 5):1023-35. doi: 10.1107/s090744499900339x.
10
Patch clamp techniques for studying ionic channels in excitable membranes.
Annu Rev Physiol. 1984;46:455-72. doi: 10.1146/annurev.ph.46.030184.002323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验