Siódmiak Jacek, Uher Jan J, Santamaría-Holek Ivan, Kruszewska Natalia, Gadomski Adam
Department of Modeling of Physicochemical Processes, Institute of Mathematics and Physics, University of Technology and Life Sciences, 85-796 Bydgoszcz, Poland.
J Biol Phys. 2007 Aug;33(4):313-29. doi: 10.1007/s10867-008-9076-1. Epub 2008 May 29.
A superdiffusive random-walk action in the depletion zone around a growing protein crystal is considered. It stands for a dynamic boundary condition of the growth process and competes steadily with a quasistatic, curvature-involving (thermodynamic) free boundary condition, both of them contributing to interpret the (mainly late-stage) growth process in terms of a prototype ion-channeling effect. An overall diffusion function contains quantitative signatures of both boundary conditions mentioned and indicates whether the new phase grows as an orderly phase or a converse scenario occurs. This situation can be treated in a quite versatile way both numerically and analytically, within a generalized Smoluchowski framework. This study can help in (1) elucidating some dynamic puzzles of a complex crystal formation vs biomolecular aggregation, also those concerning ion-channel formation, and (2) seeing how ion-channel-type dynamics of non-Markovian nature may set properly the pace of model (dis)ordered protein aggregation.
考虑了在生长的蛋白质晶体周围的耗尽区中的超扩散随机游走行为。它代表了生长过程的动态边界条件,并与准静态、涉及曲率的(热力学)自由边界条件持续竞争,这两种条件都有助于从原型离子通道效应的角度解释(主要是后期的)生长过程。一个整体扩散函数包含上述两种边界条件的定量特征,并表明新相是作为有序相生长还是出现相反的情况。在广义的斯莫卢霍夫斯基框架内,可以通过数值和解析的方式以相当通用的方法处理这种情况。这项研究有助于:(1)阐明复杂晶体形成与生物分子聚集的一些动态难题,以及与离子通道形成有关的难题;(2)了解非马尔可夫性质的离子通道型动力学如何恰当地设定模型(无序)蛋白质聚集的速度。