Dorfman Kevin D, Brenner Howard
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):052103. doi: 10.1103/PhysRevE.65.052103. Epub 2002 May 15.
Micropatterned chips possessing an asymmetric, spatially periodic array of obstacles enable the vector (directional) chromatographic separation of charged particles animated by an external electric field. We apply a network theory to analyze the chip-scale (L-scale) transport of finite-size Brownian particles in such devices and identify those factors that break the symmetry of the chip-scale particle mobility tensor, most importantly the hydrodynamic wall effects between the particles and the obstacle surfaces. Our analysis contrasts with prevailing separation theories, which are limited to effectively point-size particles, for which wall effects are negligible. These theories require a biasing of obstacle-scale (l-scale; l<<L) bifurcation branches within the network. Such bifurcations are shown to constitute but one factor in modeling the vector chromatography of finite-size particles, and not necessarily the dominant factor.
具有不对称、空间周期性障碍阵列的微图案芯片能够对由外部电场驱动的带电粒子进行矢量(定向)色谱分离。我们应用网络理论来分析此类装置中有限尺寸布朗粒子的芯片尺度(L尺度)输运,并确定那些破坏芯片尺度粒子迁移率张量对称性的因素,其中最重要的是粒子与障碍表面之间的流体动力壁效应。我们的分析与主流分离理论形成对比,主流理论仅限于有效点尺寸粒子,对于这类粒子壁效应可忽略不计。这些理论要求在网络内对障碍尺度(l尺度;l << L)的分支进行偏置。结果表明,此类分支只是模拟有限尺寸粒子矢量色谱的一个因素,不一定是主导因素。