Suppr超能文献

带有管壁上粒子的漂移和扩散的 Aris-Taylor 弥散。

Aris-Taylor dispersion with drift and diffusion of particles on the tube wall.

机构信息

Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

J Chem Phys. 2013 Aug 28;139(8):084101. doi: 10.1063/1.4818733.

Abstract

A laminar stationary flow of viscous fluid in a cylindrical tube enhances the rate of diffusion of Brownian particles along the tube axis. This so-called Aris-Taylor dispersion is due to the fact that cumulative times, spent by a diffusing particle in layers of the fluid moving with different velocities, are random variables which depend on the realization of the particle stochastic trajectory in the radial direction. Conceptually similar increase of the diffusivity occurs when the particle randomly jumps between two states with different drift velocities. Here we develop a theory that contains both phenomena as special limiting cases. It is assumed (i) that the particle in the flow can reversibly bind to the tube wall, where it moves with a given drift velocity and diffusivity, and (ii) that the radial and longitudinal diffusivities of the particle in the flow may be different. We derive analytical expressions for the effective drift velocity and diffusivity of the particle, which show how these quantities depend on the geometric and kinetic parameters of the model.

摘要

在圆柱管中粘性流体的层流固定流动增强了布朗粒子沿管轴的扩散速率。这种所谓的 Aris-Taylor 弥散是由于这样一个事实,即扩散粒子在以不同速度移动的流体层中花费的累积时间是随机变量,这取决于粒子在径向方向上的随机轨迹的实现。当粒子在两个具有不同漂移速度的状态之间随机跳跃时,会发生类似的扩散系数的概念性增加。在这里,我们发展了一种理论,其中包含了这两种现象作为特殊的极限情况。假设(i)在流动中的粒子可以可逆地与管壁结合,在那里它以给定的漂移速度和扩散系数移动,并且(ii)粒子在流动中的径向和纵向扩散系数可能不同。我们推导出粒子的有效漂移速度和扩散系数的解析表达式,这些表达式显示了这些量如何取决于模型的几何和动力学参数。

相似文献

1
Aris-Taylor dispersion with drift and diffusion of particles on the tube wall.
J Chem Phys. 2013 Aug 28;139(8):084101. doi: 10.1063/1.4818733.
2
Aris-Taylor dispersion in tubes with dead ends.
J Chem Phys. 2014 Jul 14;141(2):024705. doi: 10.1063/1.4885854.
3
Biased diffusion in three-dimensional comb-like structures.
J Chem Phys. 2015 Apr 7;142(13):134101. doi: 10.1063/1.4916310.
4
Note: Aris-Taylor dispersion from single-particle point of view.
J Chem Phys. 2012 Aug 14;137(6):066101. doi: 10.1063/1.4746027.
5
Effective Diffusivity for Transport with Fluctuating Drift Velocity.
J Phys Chem B. 2021 May 6;125(17):4489-4493. doi: 10.1021/acs.jpcb.1c01856. Epub 2021 Apr 21.
9
Effect of first order chemical reactions on the dispersion coefficient associated with laminar flow through fibrosis affected lung.
J Biomech. 2020 Jan 23;99:109494. doi: 10.1016/j.jbiomech.2019.109494. Epub 2019 Nov 11.
10
Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):061201. doi: 10.1103/PhysRevE.72.061201. Epub 2005 Dec 5.

引用本文的文献

1
Random walk particle tracking simulation on scalar diffusion with irreversible first-order absorption boundaries.
Environ Sci Pollut Res Int. 2019 Nov;26(32):33621-33630. doi: 10.1007/s11356-019-06422-1. Epub 2019 Oct 5.
2
Biased diffusion in three-dimensional comb-like structures.
J Chem Phys. 2015 Apr 7;142(13):134101. doi: 10.1063/1.4916310.
3
Aris-Taylor dispersion in tubes with dead ends.
J Chem Phys. 2014 Jul 14;141(2):024705. doi: 10.1063/1.4885854.

本文引用的文献

1
Taylor dispersion with adsorption and desorption.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036316. doi: 10.1103/PhysRevE.86.036316. Epub 2012 Sep 20.
2
Note: Aris-Taylor dispersion from single-particle point of view.
J Chem Phys. 2012 Aug 14;137(6):066101. doi: 10.1063/1.4746027.
3
Effective drift and diffusion of a particle jumping between mobile and immobile states.
J Electroanal Chem (Lausanne). 2011 Sep 15;660(2):352-355. doi: 10.1016/j.jelechem.2010.08.017.
4
Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay.
Lab Chip. 2009 Oct 21;9(20):3003-6. doi: 10.1039/b906156h. Epub 2009 Jul 17.
5
Importance of Taylor dispersion in pharmacokinetic and multiple indicator dilution modelling.
Math Med Biol. 2009 Dec;26(4):263-96. doi: 10.1093/imammb/dqp004. Epub 2009 Mar 24.
6
Comment on "Taylor dispersion with absorbing boundaries: a stochastic approach".
Phys Rev Lett. 2008 Jan 18;100(2):029402; discussion 029403. doi: 10.1103/PhysRevLett.100.029402. Epub 2008 Jan 17.
7
Taylor dispersion with absorbing boundaries: a stochastic approach.
Phys Rev Lett. 2007 Apr 20;98(16):164501. doi: 10.1103/PhysRevLett.98.164501. Epub 2007 Apr 17.
8
Colloid dispersion in a uniform-aperture fracture.
J Colloid Interface Sci. 2006 Aug 1;300(1):383-90. doi: 10.1016/j.jcis.2006.03.067. Epub 2006 Apr 3.
9
Separation mechanisms underlying vector chromatography in microlithographic arrays.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):052103. doi: 10.1103/PhysRevE.65.052103. Epub 2002 May 15.
10
Generalized Taylor-Aris dispersion in discrete spatially periodic networks: microfluidic applications.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 1):021103. doi: 10.1103/PhysRevE.65.021103. Epub 2002 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验