Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Chem Phys. 2013 Aug 28;139(8):084101. doi: 10.1063/1.4818733.
A laminar stationary flow of viscous fluid in a cylindrical tube enhances the rate of diffusion of Brownian particles along the tube axis. This so-called Aris-Taylor dispersion is due to the fact that cumulative times, spent by a diffusing particle in layers of the fluid moving with different velocities, are random variables which depend on the realization of the particle stochastic trajectory in the radial direction. Conceptually similar increase of the diffusivity occurs when the particle randomly jumps between two states with different drift velocities. Here we develop a theory that contains both phenomena as special limiting cases. It is assumed (i) that the particle in the flow can reversibly bind to the tube wall, where it moves with a given drift velocity and diffusivity, and (ii) that the radial and longitudinal diffusivities of the particle in the flow may be different. We derive analytical expressions for the effective drift velocity and diffusivity of the particle, which show how these quantities depend on the geometric and kinetic parameters of the model.
在圆柱管中粘性流体的层流固定流动增强了布朗粒子沿管轴的扩散速率。这种所谓的 Aris-Taylor 弥散是由于这样一个事实,即扩散粒子在以不同速度移动的流体层中花费的累积时间是随机变量,这取决于粒子在径向方向上的随机轨迹的实现。当粒子在两个具有不同漂移速度的状态之间随机跳跃时,会发生类似的扩散系数的概念性增加。在这里,我们发展了一种理论,其中包含了这两种现象作为特殊的极限情况。假设(i)在流动中的粒子可以可逆地与管壁结合,在那里它以给定的漂移速度和扩散系数移动,并且(ii)粒子在流动中的径向和纵向扩散系数可能不同。我们推导出粒子的有效漂移速度和扩散系数的解析表达式,这些表达式显示了这些量如何取决于模型的几何和动力学参数。