Izmailian N Sh, Oganesyan K B, Hu Chin-Kun
Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):056132. doi: 10.1103/PhysRevE.65.056132. Epub 2002 May 22.
Finite-size scaling, finite-size corrections, and boundary effects for critical systems have attracted much attention in recent years. Here we derive exact finite-size corrections for the free energy F and the specific heat C of the critical ferromagnetic Ising model on the Mu x 2 Nu square lattice with Brascamp-Kunz (BK) boundary conditions [J. Math. Phys. 15, 66 (1974)] and compare such results with those under toroidal boundary conditions. When the ratio xi/2=(Mu+1)/2 Nu is smaller than 1 the behaviors of finite-size corrections for C are quite different for BK and toroidal boundary conditions; when ln(xi/2) is larger than 3, finite-size corrections for C in two boundary conditions approach the same values. In the limit Nu-->infinity we obtain the expansion of the free energy for infinitely long strip with BK boundary conditions. Our results are consistent with the conformal field theory prediction for the mixed boundary conditions by Cardy [Nucl. Phys. B 275, 200 (1986)] although the definitions of boundary conditions in two cases are different in one side of the long strip.
近年来,临界系统的有限尺寸标度、有限尺寸修正和边界效应备受关注。在此,我们推导了具有布拉斯坎普 - 昆茨(BK)边界条件[《数学物理杂志》15, 66 (1974)]的(M\times2N)方形晶格上临界铁磁伊辛模型的自由能(F)和比热(C)的精确有限尺寸修正,并将这些结果与环形边界条件下的结果进行比较。当(\xi/2 = (M + 1)/2N)的比值小于1时,BK边界条件和环形边界条件下比热(C)的有限尺寸修正行为有很大不同;当(\ln(\xi/2))大于3时,两种边界条件下比热(C)的有限尺寸修正趋近于相同的值。在(N\to\infty)的极限情况下,我们得到了具有BK边界条件的无限长带的自由能展开式。尽管在长带一侧两种情况下边界条件的定义有所不同,但我们的结果与卡迪[《核物理B》275, 200 (1986)]对混合边界条件的共形场论预测一致。