Suppr超能文献

奇异台球的最近邻分布

Nearest-neighbor distribution for singular billiards.

作者信息

Bogomolny E, Giraud O, Schmit C

机构信息

Laboratoire de Physique Théorique et Modèles Statistiques, Université de Paris XI, Bâtiment 100, 91405 Orsay Cedex, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):056214. doi: 10.1103/PhysRevE.65.056214. Epub 2002 May 17.

Abstract

The exact computation of the nearest-neighbor spacing distribution P(s) is performed for a rectangular billiard with a pointlike scatterer inside for periodic and Dirichlet boundary conditions, and it is demonstrated that when s-->infinity this function decreases exponentially. Together with the results of Bogomolny, Gerland, and Schmit [Phys. Rev. E 63, 036206 (2001)], it proves that spectral statistics of such systems is of intermediate type characterized by level repulsion at small distances and exponential fall-off of the nearest-neighbor distribution at large distances. The calculation of the nth nearest-neighbor spacing distribution P(n)(s) and its asymptotics is performed as well for any boundary conditions.

摘要

对于内部有一个点状散射体的矩形台球,在周期性边界条件和狄利克雷边界条件下,精确计算了最近邻间距分布(P(s)),并且证明了当(s\to\infty)时,该函数呈指数下降。结合博戈莫尔尼、格兰德和施密特的结果[《物理评论E》63, 036206 (2001)],证明了此类系统的谱统计属于中间类型,其特征是在小距离处能级排斥,在大距离处最近邻分布呈指数衰减。对于任何边界条件,还计算了第(n)个最近邻间距分布(P^{(n)}(s))及其渐近行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验