Stringer S M, Trappenberg T P, Rolls E T, de Araujo I E T
Oxford University, Department of Experimental Psychology, UK.
Network. 2002 May;13(2):217-42.
Some neurons encode information about the orientation or position of an animal, and can maintain their response properties in the absence of visual input. Examples include head direction cells in rats and primates, place cells in rats and spatial view cells in primates. 'Continuous attractor' neural networks model these continuous physical spaces by using recurrent collateral connections between the neurons which reflect the distance between the neurons in the state space (e.g. head direction space) of the animal. These networks maintain a localized packet of neuronal activity representing the current state of the animal. We show how the synaptic connections in a one-dimensional continuous attractor network (of for example head direction cells) could be self-organized by associative learning. We also show how the activity packet could be moved from one location to another by idiothetic (self-motion) inputs, for example vestibular or proprioceptive, and how the synaptic connections could self-organize to implement this. The models described use 'trace' associative synaptic learning rules that utilize a form of temporal average of recent cell activity to associate the firing of rotation cells with the recent change in the representation of the head direction in the continuous attractor. We also show how a nonlinear neuronal activation function that could be implemented by NMDA receptors could contribute to the stability of the activity packet that represents the current state of the animal.
一些神经元编码有关动物方向或位置的信息,并且在没有视觉输入的情况下能够维持其反应特性。例子包括大鼠和灵长类动物中的头部方向细胞、大鼠中的位置细胞以及灵长类动物中的空间视图细胞。“连续吸引子”神经网络通过利用神经元之间的递归侧支连接来对这些连续物理空间进行建模,这些连接反映了动物状态空间(例如头部方向空间)中神经元之间的距离。这些网络维持一个局部化的神经元活动包,代表动物的当前状态。我们展示了一维连续吸引子网络(例如头部方向细胞的网络)中的突触连接如何通过联想学习进行自组织。我们还展示了活动包如何通过本体感受(自我运动)输入(例如前庭或本体感受)从一个位置移动到另一个位置,以及突触连接如何自组织以实现这一点。所描述的模型使用“痕迹”联想突触学习规则,该规则利用最近细胞活动的一种时间平均值,将旋转细胞的放电与连续吸引子中头部方向表示的最近变化相关联。我们还展示了由NMDA受体实现的非线性神经元激活函数如何有助于代表动物当前状态的活动包的稳定性。