Suppr超能文献

突触调制计算的神经群体动力学。

Neural population dynamics of computing with synaptic modulations.

机构信息

Allen Institute, MindScope Program, Seattle, United States.

出版信息

Elife. 2023 Feb 23;12:e83035. doi: 10.7554/eLife.83035.

Abstract

In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights frozen after training, relying on an internal state stored in neuronal activity to hold task-relevant information. In this work, we study the computational potential and resulting dynamics of a network that relies solely on synapse modulation during inference to process task-relevant information, the multi-plasticity network (MPN). Since the MPN has no recurrent connections, this allows us to study the computational capabilities and dynamical behavior contributed by synapses modulations alone. The generality of the MPN allows for our results to apply to synaptic modulation mechanisms ranging from short-term synaptic plasticity (STSP) to slower modulations such as spike-time dependent plasticity (STDP). We thoroughly examine the neural population dynamics of the MPN trained on integration-based tasks and compare it to known RNN dynamics, finding the two to have fundamentally different attractor structure. We find said differences in dynamics allow the MPN to outperform its RNN counterparts on several neuroscience-relevant tests. Training the MPN across a battery of neuroscience tasks, we find its computational capabilities in such settings is comparable to networks that compute with recurrent connections. Altogether, we believe this work demonstrates the computational possibilities of computing with synaptic modulations and highlights important motifs of these computations so that they can be identified in brain-like systems.

摘要

除了长时间尺度的重布线,大脑中的突触还受到快速时间尺度上的显著调制,这为大脑提供了额外的信息处理方式。尽管如此,像递归神经网络 (RNN) 这样的大脑模型在训练后通常会冻结其权重,依赖于神经元活动中存储的内部状态来保持与任务相关的信息。在这项工作中,我们研究了一种仅在推理过程中依赖突触调制来处理与任务相关信息的网络的计算潜力和由此产生的动力学,即多可塑性网络 (MPN)。由于 MPN 没有递归连接,因此我们可以研究仅由突触调制贡献的计算能力和动态行为。MPN 的通用性使得我们的结果可以应用于从短期突触可塑性 (STSP) 到较慢调制(如依赖于尖峰时间的可塑性(STDP))的各种突触调制机制。我们彻底检查了基于整合任务训练的 MPN 的神经群体动力学,并将其与已知的 RNN 动力学进行了比较,发现两者具有根本不同的吸引子结构。我们发现,动态方面的差异使得 MPN 在几项与神经科学相关的测试中能够优于其 RNN 对应物。在一系列神经科学任务中训练 MPN,我们发现它在这些设置中的计算能力可与具有递归连接的网络相媲美。总的来说,我们相信这项工作展示了使用突触调制进行计算的计算可能性,并强调了这些计算的重要模式,以便可以在类脑系统中识别它们。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验