Verma Subodh, Maitland Andrew, Weisel Richard D, Fedak Paul W M, Pomroy Neil C, Li Shu-Hong, Mickle Donald A G, Li Ren-Ke, Rao Vivek
Division of Cardiac Surgery, Toronto General Hospital, Toronto, Ontario, Canada.
J Thorac Cardiovasc Surg. 2002 Jun;123(6):1074-83. doi: 10.1067/mtc.2002.121687.
Contemporary cardioprotective strategies to prevent perioperative ischemia-reperfusion injury have focused on the l-arginine nitric oxide pathway. Tetrahydrobiopterin is an absolute cofactor required for the enzyme nitric oxide synthase and is thus a critical determinant of nitric oxide production. We hypothesized that ischemia-reperfusion results in diminished levels of tetrahydrobiopterin, which might represent a key cellular defect underlying endothelial and myocyte dysfunction after ischemia-reperfusion. To this aim, we examined the effects of tetrahydrobiopterin supplementation in (1) an in vivo experimental model of global ischemia-reperfusion and (2) an in vitro human ventricular heart cell model of simulated ischemia-reperfusion. Measures of endothelial function, oxidant production, cell survival, and cardiac function were used to assess outcome.
In study 1 Wistar rats were divided into one of 2 groups (n = 10 per group). One group received tetrahydrobiopterin (25 mg x kg(-1) x d(-1) for 7 days), and the other group served as the control group. Hearts were subjected to 30 minutes of ischemia followed by 30 minutes of reperfusion, and left ventricular developed pressure, left ventricular systolic pressure, and left ventricular end-diastolic pressure were determined by using the modified Langendorff technique. In study 2 we quantitated myocardial malondialdehyde, a marker of lipid peroxidation, in ventricular tissues from both groups of animals using butanol phase extraction and spectrophotometric analysis. In study 3 coronary vascular responses were determined in vascular segments of the left coronary artery in both groups of animals after ischemia-reperfusion. Endothelium-dependent and endothelium-independent vasodilatation to acetylcholine and sodium nitroprusside, respectively, were compared between groups. In study 4, using a human ventricular heart cell model of simulated ischemia-reperfusion, we studied the effects of tetrahydrobiopterin (20 micromol/L) on cellular injury (as assessed by means of trypan blue uptake).
After ischemia-reperfusion, myocardial dysfunction was evidenced by a decrease in left ventricular developed pressure and an increase in left ventricular end-diastolic pressure (P =.01 compared with baseline). Hearts from tetrahydrobiopterin-treated rats exhibited protection against ischemia-reperfusion injury (left ventricular developed pressure: 74 +/- 4 vs control 42 +/- 8 mm Hg, P =.01; left ventricular end-diastolic pressure: 12 +/- 3 vs 34 +/- 7 mm Hg, P =.01). Furthermore, tetrahydrobiopterin treatment attenuated the rise in malondialdehyde levels after ischemia-reperfusion (P =.01). After reperfusion, coronary endothelial function to acetylcholine was attenuated (P =.003 vs sham-treated mice), whereas responses to sodium nitroprusside remained unchanged. Tetrahydrobiopterin-treated rats exhibited an improvement in acetylcholine-mediated vasorelaxation (P =.01 vs ischemia-reperfusion group). Cellular injury, as assessed by means of trypan blue uptake, was higher in human ventricular heart cells subjected to simulated ischemia-reperfusion; this effect was prevented with tetrahydrobiopterin treatment (P =.001).
Supplemental tetrahydrobiopterin provides a novel cardioprotective effect on left ventricular function, endothelial-vascular reactivity, oxidative damage, and cardiomyocyte injury after ischemia-reperfusion injury and might represent an important cellular target for future operative myocardial protection strategies.
当代预防围手术期缺血再灌注损伤的心脏保护策略主要集中在L-精氨酸一氧化氮途径。四氢生物蝶呤是一氧化氮合酶所需的绝对辅因子,因此是一氧化氮生成的关键决定因素。我们假设缺血再灌注会导致四氢生物蝶呤水平降低,这可能是缺血再灌注后内皮细胞和心肌细胞功能障碍的关键细胞缺陷。为了验证这一假设,我们在(1)整体缺血再灌注的体内实验模型和(2)模拟缺血再灌注的体外人心室心肌细胞模型中研究了补充四氢生物蝶呤的效果。采用内皮功能、氧化剂生成、细胞存活和心脏功能等指标来评估结果。
在研究1中,将Wistar大鼠分为2组(每组n = 10)。一组接受四氢生物蝶呤(25 mg·kg⁻¹·d⁻¹,共7天),另一组作为对照组。心脏先进行30分钟缺血,然后再灌注30分钟,采用改良Langendorff技术测定左心室舒张末压、左心室收缩压和左心室舒张末压。在研究2中,我们采用丁醇相萃取和分光光度分析法定量两组动物心室组织中脂质过氧化的标志物心肌丙二醛。在研究3中,测定两组动物缺血再灌注后左冠状动脉血管段的冠状动脉血管反应。比较两组之间分别对乙酰胆碱和硝普钠介导的内皮依赖性和非内皮依赖性血管舒张情况。在研究4中,使用模拟缺血再灌注的人心室心肌细胞模型,研究四氢生物蝶呤(20 μmol/L)对细胞损伤的影响(通过台盼蓝摄取评估)。
缺血再灌注后,左心室舒张末压升高,左心室舒张末压降低,提示心肌功能障碍(与基线相比,P = 0.01)。接受四氢生物蝶呤治疗的大鼠心脏对缺血再灌注损伤具有保护作用(左心室舒张末压:74±4 vs对照组42±8 mmHg,P = 0.01;左心室舒张末压:12±3 vs 34±7 mmHg,P = 0.01)。此外,四氢生物蝶呤治疗可减轻缺血再灌注后丙二醛水平的升高(P = 0.01)。再灌注后,对乙酰胆碱的冠状动脉内皮功能减弱(与假手术组小鼠相比,P = 0.003),而对硝普钠的反应保持不变。接受四氢生物蝶呤治疗的大鼠乙酰胆碱介导的血管舒张功能得到改善(与缺血再灌注组相比,P = 0.01)。通过台盼蓝摄取评估,模拟缺血再灌注的人心室心肌细胞的细胞损伤更高;四氢生物蝶呤治疗可预防这种效应(P = 0.001)。
补充四氢生物蝶呤对缺血再灌注损伤后的左心室功能、内皮-血管反应性、氧化损伤和心肌细胞损伤具有新的心脏保护作用,可能是未来手术心肌保护策略的重要细胞靶点。