Suppr超能文献

小立碗藓中腺苷5'-磷酸硫酸还原酶基因的功能敲除恢复了一条古老的硫酸盐同化途径。

Functional knockout of the adenosine 5'-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation.

作者信息

Koprivova Anna, Meyer Andreas J, Schween Gabriele, Herschbach Cornelia, Reski Ralf, Kopriva Stanislav

机构信息

Department of Plant Biotechnology, University of Freiburg, D-79104 Freiburg, Germany.

出版信息

J Biol Chem. 2002 Aug 30;277(35):32195-201. doi: 10.1074/jbc.M204971200. Epub 2002 Jun 17.

Abstract

The reduction of adenosine 5'-phosphosulfate (APS) to sulfite catalyzed by adenosine 5'-phosphosulfate reductase is considered to be the key step of sulfate assimilation in higher plants. However, analogous to enteric bacteria, an alternative pathway of sulfate reduction via phosphoadenosine 5'-phosphosulfate (PAPS) was proposed. To date, the presence of the corresponding enzyme, PAPS reductase, could be neither confirmed nor excluded in plants. To find possible alternative routes of sulfate assimilation we disrupted the adenosine 5'-phosphosulfate reductase single copy gene in Physcomitrella patens by homologous recombination. This resulted in complete loss of the correct transcript and enzymatic activity. Surprisingly, the knockout plants grew on sulfate as the sole sulfur source, and the concentration of thiols in the knockouts did not differ from the wild type plants. However, when exposed to a sublethal concentration of cadmium, the knockouts were more sensitive than wild type plants. When fed [(35)S]sulfate, the knockouts incorporated (35)S in thiols; the flux through sulfate reduction was approximately 50% lower than in the wild type plants. PAPS reductase activity could not be measured with thioredoxin as reductant, but a cDNA and a gene coding for this enzyme were detected in P. patens. The moss Physcomitrella patens is thus the first plant species wherein PAPS reductase was confirmed on the molecular level and also the first organism wherein both APS- and PAPS-dependent sulfate assimilation co-exist.

摘要

5'-磷酸腺苷硫酸酯(APS)被5'-磷酸腺苷硫酸还原酶催化还原为亚硫酸盐,这一过程被认为是高等植物中硫酸盐同化的关键步骤。然而,类似于肠道细菌,有人提出了一条经由磷酸腺苷5'-磷酸硫酸酯(PAPS)的硫酸盐还原替代途径。迄今为止,在植物中既无法证实也无法排除相应的酶——PAPS还原酶的存在。为了找到可能的硫酸盐同化替代途径,我们通过同源重组破坏了小立碗藓中5'-磷酸腺苷硫酸还原酶的单拷贝基因。这导致正确转录本和酶活性完全丧失。令人惊讶的是,敲除植株能够以硫酸盐作为唯一硫源生长,并且敲除植株中硫醇的浓度与野生型植株没有差异。然而,当暴露于亚致死浓度的镉时,敲除植株比野生型植株更敏感。当给敲除植株饲喂[³⁵S]硫酸盐时,敲除植株将³⁵S掺入硫醇中;通过硫酸盐还原的通量比野生型植株低约50%。无法用硫氧还蛋白作为还原剂来测定PAPS还原酶的活性,但在小立碗藓中检测到了编码该酶的cDNA和基因。因此,小立碗藓是第一个在分子水平上证实存在PAPS还原酶的植物物种,也是第一个同时存在依赖APS和依赖PAPS的硫酸盐同化的生物体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验