Kopriva Stanislav, Fritzemeier Kai, Wiedemann Gertrud, Reski Ralf
Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
J Biol Chem. 2007 Aug 3;282(31):22930-8. doi: 10.1074/jbc.M702522200. Epub 2007 May 22.
Sulfate assimilation provides reduced sulfur for synthesis of the amino acids cysteine and methionine and for a range of other metabolites. Sulfate has to be activated prior to reduction by adenylation to adenosine 5'-phosphosulfate (APS). In plants, algae, and many bacteria, this compound is reduced to sulfite by APS reductase (APR); in fungi and some cyanobacteria and gamma-proteobacteria, a second activation step, phosphorylation to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), is necessary before reduction to sulfite by PAPS reductase (PAPR). We found previously that the moss Physcomitrella patens is unique among these organisms in possessing orthologs of both APR and PAPR genes (Koprivova, A., Meyer, A. J., Schween, G., Herschbach, C., Reski, R., and Kopriva, S. (2002) J. Biol. Chem. 277, 32195-32201). To assess the function of the two enzymes, we compared their biochemical properties by analysis of purified recombinant proteins. APR from Physcomitrella is very similar to the well characterized APRs from seed plants. On the other hand, we found that the putative PAPR preferentially reduces APS. Sequence analysis, analysis of UV-visible spectra, and determination of iron revealed that this new APR, named PpAPR-B, does not contain the FeS cluster, which was previously believed to determine the substrate specificity of the otherwise relatively similar enzymes. The lack of the FeS cluster in PpAPR-B catalysis is connected with a lower turnover rate but higher stability of the protein. These findings show that APS reduction without the FeS cluster is possible and that plant sulfate assimilation is predominantly dependent on reduction of APS.
硫酸盐同化作用为氨基酸半胱氨酸和甲硫氨酸的合成以及一系列其他代谢物提供还原态硫。在通过腺苷化生成腺苷5'-磷酸硫酸(APS)而被还原之前,硫酸盐必须先被激活。在植物、藻类和许多细菌中,这种化合物通过APS还原酶(APR)被还原为亚硫酸盐;在真菌、一些蓝细菌和γ-变形菌中,在通过PAPS还原酶(PAPR)还原为亚硫酸盐之前,需要进行第二步激活,即磷酸化生成3'-磷酸腺苷5'-磷酸硫酸(PAPS)。我们之前发现,在这些生物中,小立碗藓是独特的,它同时拥有APR和PAPR基因的直系同源物(科普里沃娃,A.,迈耶,A. J.,施温,G.,赫施巴赫,C.,雷斯基,R.,和科普里瓦,S.(2002年)《生物化学杂志》277,32195 - 32201)。为了评估这两种酶的功能,我们通过分析纯化的重组蛋白比较了它们的生化特性。小立碗藓的APR与种子植物中特征明确的APR非常相似。另一方面,我们发现假定的PAPR优先还原APS。序列分析、紫外可见光谱分析和铁含量测定表明,这种新的APR,命名为PpAPR - B,不包含铁硫簇,而之前认为铁硫簇决定了其他相对相似酶的底物特异性。PpAPR - B催化过程中缺乏铁硫簇与较低的周转率但较高的蛋白质稳定性有关。这些发现表明,没有铁硫簇也可以进行APS还原,并且植物硫酸盐同化作用主要依赖于APS的还原。