Yi Nengjun, Xu Shizhong
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA.
Genet Res. 2002 Apr;79(2):185-98. doi: 10.1017/s0016672301005511.
Epistatic variance can be an important source of variation for complex traits. However, detecting epistatic effects is difficult primarily due to insufficient sample sizes and lack of robust statistical methods. In this paper, we develop a Bayesian method to map multiple quantitative trait loci (QTLs) with epistatic effects. The method can map QTLs in complicated mating designs derived from the cross of two inbred lines. In addition to mapping QTLs for quantitative traits, the proposed method can even map genes underlying binary traits such as disease susceptibility using the threshold model. The parameters of interest are various QTL effects, including additive, dominance and epistatic effects of QTLs, the locations of identified QTLs and even the number of QTLs. When the number of QTLs is treated as an unknown parameter, the dimension of the model becomes a variable. This requires the reversible jump Markov chain Monte Carlo algorithm. The utility of the proposed method is demonstrated through analysis of simulation data.
上位性方差可能是复杂性状变异的一个重要来源。然而,检测上位性效应主要因样本量不足和缺乏稳健的统计方法而困难重重。在本文中,我们开发了一种贝叶斯方法来定位具有上位性效应的多个数量性状基因座(QTL)。该方法可以在由两个近交系杂交产生的复杂交配设计中定位QTL。除了定位数量性状的QTL外,所提出的方法甚至可以使用阈值模型定位二元性状(如疾病易感性)潜在的基因。感兴趣的参数是各种QTL效应,包括QTL的加性、显性和上位性效应、已识别QTL的位置以及QTL的数量。当QTL的数量被视为未知参数时,模型的维度就会成为一个变量。这就需要使用可逆跳跃马尔可夫链蒙特卡罗算法。通过对模拟数据的分析证明了所提出方法的实用性。