Grewe V, Reithmeier C, Shindell D T
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, e.V. (DLR), Wessling, Germany.
Chemosphere. 2002 Jun;47(8):851-61. doi: 10.1016/s0045-6535(02)00038-3.
The importance of the interaction between chemistry and dynamics in the upper troposphere and lower stratosphere for chemical species like ozone is investigated using two chemistry-climate models and a Lagrangian trajectory model. Air parcels from the upper troposphere, i.e. regions of lightning and aircraft emissions, are able to be transported into the lowermost stratosphere (LMS). Trajectory calculations suggest that the main transport pathway runs via the inter tropical convergence zone, across the tropical tropopause and then to higher latitudes, i.e. into the LMS. NOx from aircraft emissions at mid-latitudes are unlikely to perturb the LMS since they are washed-out while still in the troposphere. In contrast, NOx from tropical lightning has the chance to accumulate in the LMS. Because of the longer residence times of NOx in the LMS, compared to the upper troposphere, this excess NOx from lightning has the potential to form ozone in the LMS, which then is transported back to the troposphere at mid-latitudes. In the models, around 10% of the ozone concentration and 50% of the NOx concentration in the northern hemisphere LMS is produced by lightning NOx At least 5% of the ozone concentration and 35% the NOx concentration at 150 hPa at mid-latitudes originates from tropical lightning in the climate-chemistry simulations.
利用两个化学气候模型和一个拉格朗日轨迹模型,研究了对流层上部和平流层下部化学与动力学相互作用对臭氧等化学物质的重要性。来自对流层上部(即闪电和飞机排放区域)的气团能够被输送到平流层最底层(LMS)。轨迹计算表明,主要传输路径是通过热带辐合带,穿过热带对流层顶,然后向更高纬度,即进入平流层最底层。中纬度地区飞机排放的氮氧化物不太可能扰乱平流层最底层,因为它们在对流层时就被清除了。相比之下,热带闪电产生的氮氧化物有机会在平流层最底层积累。由于与对流层上部相比,氮氧化物在平流层最底层的停留时间更长,这种来自闪电的过量氮氧化物有可能在平流层最底层形成臭氧,然后在中纬度地区被输送回对流层。在模型中,北半球平流层最底层约10%的臭氧浓度和50%的氮氧化物浓度是由闪电产生的氮氧化物造成的。在气候化学模拟中,中纬度地区150百帕高度处至少5%的臭氧浓度和35%的氮氧化物浓度源自热带闪电。