Suppr超能文献

相似文献

1
Quantitative detection of iodine in the stratosphere.
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):1860-1866. doi: 10.1073/pnas.1916828117. Epub 2020 Jan 13.
2
The influence of iodine on the Antarctic stratospheric ozone hole.
Proc Natl Acad Sci U S A. 2022 Feb 15;119(7). doi: 10.1073/pnas.2110864119.
3
Dynamic-chemical coupling of the upper troposphere and lower stratosphere region.
Chemosphere. 2002 Jun;47(8):851-61. doi: 10.1016/s0045-6535(02)00038-3.
4
Detection of stratospheric ozone intrusions by windprofiler radars.
Nature. 2007 Nov 8;450(7167):281-4. doi: 10.1038/nature06312.
5
Active and widespread halogen chemistry in the tropical and subtropical free troposphere.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9281-6. doi: 10.1073/pnas.1505142112. Epub 2015 Jun 29.
6
Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.
Photochem Photobiol Sci. 2007 Mar;6(3):301-10. doi: 10.1039/b700022g. Epub 2007 Feb 6.
7
Effect of bromine and iodine chemistry on tropospheric ozone over Asia-Pacific using the CMAQ model.
Chemosphere. 2021 Jan;262:127595. doi: 10.1016/j.chemosphere.2020.127595. Epub 2020 Jul 10.
8
Dynamical variability in the modelling of chemistry-climate interactions.
Faraday Discuss. 2005;130:27-39; discussion 125-51, 519-24. doi: 10.1039/b417947c.
9
Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13789-93. doi: 10.1073/pnas.1511463112. Epub 2015 Oct 26.
10
Quantifying stratospheric ozone in the upper troposphere with in situ measurements of HCl.
Science. 2004 Apr 9;304(5668):261-5. doi: 10.1126/science.1093418.

引用本文的文献

1
Concluding remarks: Atmospheric chemistry in cold environments.
Faraday Discuss. 2025 May 7. doi: 10.1039/d5fd00042d.
2
Key role of short-lived halogens on global atmospheric oxidation during historical periods.
Environ Sci Atmos. 2025 Feb 19;5(5):547-562. doi: 10.1039/d4ea00141a. eCollection 2025 May 15.
3
Evolution of the iodine cycle and the late stabilization of the Earth's ozone layer.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2412898121. doi: 10.1073/pnas.2412898121. Epub 2025 Jan 6.
4
Iodine Activation from Iodate Reduction in Aqueous Films via Photocatalyzed and Dark Reactions.
ACS Earth Space Chem. 2024 Dec 3;8(12):2495-2508. doi: 10.1021/acsearthspacechem.4c00224. eCollection 2024 Dec 19.
5
New particle formation from isoprene under upper-tropospheric conditions.
Nature. 2024 Dec;636(8041):115-123. doi: 10.1038/s41586-024-08196-0. Epub 2024 Dec 4.
6
Global variability in atmospheric new particle formation mechanisms.
Nature. 2024 Jul;631(8019):98-105. doi: 10.1038/s41586-024-07547-1. Epub 2024 Jun 12.
7
Temperature, humidity, and ionisation effect of iodine oxoacid nucleation.
Environ Sci Atmos. 2024 Mar 21;4(5):531-546. doi: 10.1039/d4ea00013g. eCollection 2024 May 16.
8
Spontaneous Iodide Activation at the Air-Water Interface of Aqueous Droplets.
Environ Sci Technol. 2023 Oct 17;57(41):15580-15587. doi: 10.1021/acs.est.3c05777. Epub 2023 Oct 7.
9
Natural short-lived halogens exert an indirect cooling effect on climate.
Nature. 2023 Jun;618(7967):967-973. doi: 10.1038/s41586-023-06119-z. Epub 2023 Jun 28.
10
Solvation, Surface Propensity, and Chemical Reactions of Solutes at Atmospheric Liquid-Vapor Interfaces.
Acc Chem Res. 2022 Dec 20;55(24):3641-3651. doi: 10.1021/acs.accounts.2c00604. Epub 2022 Dec 6.

本文引用的文献

1
Atmospheric Iodine (I and I) Record in Spruce Tree Rings in the Northeast Qinghai-Tibet Plateau.
Environ Sci Technol. 2019 Aug 6;53(15):8706-8714. doi: 10.1021/acs.est.9b01160. Epub 2019 Jul 26.
2
Alpine ice evidence of a three-fold increase in atmospheric iodine deposition since 1950 in Europe due to increasing oceanic emissions.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):12136-12141. doi: 10.1073/pnas.1809867115. Epub 2018 Nov 12.
3
Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century.
Nat Commun. 2018 Apr 13;9(1):1452. doi: 10.1038/s41467-018-03756-1.
4
Coupling free radical catalysis, climate change, and human health.
Phys Chem Chem Phys. 2018 Apr 25;20(16):10569-10587. doi: 10.1039/c7cp08331a.
5
The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment.
Bull Am Meteorol Soc. 2017 Jan;98(1):106-128. doi: 10.1175/BAMS-D-14-00272.1. Epub 2017 Jan 23.
6
Transport of ice into the stratosphere and the humidification of the stratosphere over the 21 century.
Geophys Res Lett. 2016 Mar 16;43(5):2323-2329. doi: 10.1002/2016GL067991. Epub 2016 Mar 12.
7
Molecular-scale evidence of aerosol particle formation via sequential addition of HIO.
Nature. 2016 Sep 22;537(7621):532-534. doi: 10.1038/nature19314. Epub 2016 Aug 31.
8
Active and widespread halogen chemistry in the tropical and subtropical free troposphere.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9281-6. doi: 10.1073/pnas.1505142112. Epub 2015 Jun 29.
9
Atmospheric degradation of ozone depleting substances, their substitutes, and related species.
Chem Rev. 2015 May 27;115(10):3704-59. doi: 10.1021/cr5006759. Epub 2015 Apr 20.
10
A large ozone-circulation feedback and its implications for global warming assessments.
Nat Clim Chang. 2015 Jan 1;5(January):41-45. doi: 10.1038/nclimate2451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验