Suppr超能文献

基于翻译后修饰和定位特征预测人类蛋白质功能。

Prediction of human protein function from post-translational modifications and localization features.

作者信息

Jensen L J, Gupta R, Blom N, Devos D, Tamames J, Kesmir C, Nielsen H, Staerfeldt H H, Rapacki K, Workman C, Andersen C A F, Knudsen S, Krogh A, Valencia A, Brunak S

机构信息

Center for Biological Sequence Analysis, Biocentrum-DTU, Building 208, The Technical University of Denmark, DK-2800 Lyngby, Denmark.

出版信息

J Mol Biol. 2002 Jun 21;319(5):1257-65. doi: 10.1016/S0022-2836(02)00379-0.

Abstract

We have developed an entirely sequence-based method that identifies and integrates relevant features that can be used to assign proteins of unknown function to functional classes, and enzyme categories for enzymes. We show that strategies for the elucidation of protein function may benefit from a number of functional attributes that are more directly related to the linear sequence of amino acids, and hence easier to predict, than protein structure. These attributes include features associated with post-translational modifications and protein sorting, but also much simpler aspects such as the length, isoelectric point and composition of the polypeptide chain.

摘要

我们开发了一种完全基于序列的方法,该方法可识别并整合相关特征,这些特征可用于将未知功能的蛋白质归类到功能类别中,并将酶归类到酶类别中。我们表明,阐明蛋白质功能的策略可能受益于许多功能属性,这些属性与氨基酸的线性序列更直接相关,因此比蛋白质结构更容易预测。这些属性包括与翻译后修饰和蛋白质分选相关的特征,也包括多肽链的长度、等电点和组成等更简单的方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验