Suppr超能文献

基于翻译后修饰和定位特征预测人类蛋白质功能。

Prediction of human protein function from post-translational modifications and localization features.

作者信息

Jensen L J, Gupta R, Blom N, Devos D, Tamames J, Kesmir C, Nielsen H, Staerfeldt H H, Rapacki K, Workman C, Andersen C A F, Knudsen S, Krogh A, Valencia A, Brunak S

机构信息

Center for Biological Sequence Analysis, Biocentrum-DTU, Building 208, The Technical University of Denmark, DK-2800 Lyngby, Denmark.

出版信息

J Mol Biol. 2002 Jun 21;319(5):1257-65. doi: 10.1016/S0022-2836(02)00379-0.

Abstract

We have developed an entirely sequence-based method that identifies and integrates relevant features that can be used to assign proteins of unknown function to functional classes, and enzyme categories for enzymes. We show that strategies for the elucidation of protein function may benefit from a number of functional attributes that are more directly related to the linear sequence of amino acids, and hence easier to predict, than protein structure. These attributes include features associated with post-translational modifications and protein sorting, but also much simpler aspects such as the length, isoelectric point and composition of the polypeptide chain.

摘要

我们开发了一种完全基于序列的方法,该方法可识别并整合相关特征,这些特征可用于将未知功能的蛋白质归类到功能类别中,并将酶归类到酶类别中。我们表明,阐明蛋白质功能的策略可能受益于许多功能属性,这些属性与氨基酸的线性序列更直接相关,因此比蛋白质结构更容易预测。这些属性包括与翻译后修饰和蛋白质分选相关的特征,也包括多肽链的长度、等电点和组成等更简单的方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验