Suppr超能文献

蛋白质-蛋白质相互作用的计算预测

Computational prediction of protein-protein interactions.

作者信息

Obenauer John C, Yaffe Michael B

机构信息

Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Methods Mol Biol. 2004;261:445-68. doi: 10.1385/1-59259-762-9:445.

Abstract

Eukaryotic proteins typically contain one or more modular domains such as kinases, phosphatases, and phoshopeptide-binding domains, as well as characteristic sequence motifs that direct post-translational modifications such as phosphorylation, or mediate binding to specific modular domains. A computational approach to predict protein interactions on a proteome-wide basis would therefore consist of identifying modular domains and sequence motifs from protein primary sequence data, creating sequence specificity-based algorithms to connect a domain in one protein with a motif in another in "interaction space," and then graphically constructing possible interaction networks. Computational methods for predicting modular domains in proteins have been quite successful, but identifying the short sequence motifs these domains recognize has been more difficult. We are developing improved methods to identify these motifs by combining experimental and computational techniques with databases of sequences and binding information. Scansite is a web-accessible program that predicts interactions between proteins using experimental binding data from peptide library and phage display experiments. This program focuses on domains important in cell signaling, but it can, in principle, be used for other interactions if the domains and binding motifs are known. This chapter describes in detail how to use Scansite to predict the binding partners of an input protein, and how to find all proteins that contain a given sequence motif.

摘要

真核生物蛋白质通常包含一个或多个模块化结构域,如激酶、磷酸酶和磷酸肽结合结构域,以及指导翻译后修饰(如磷酸化)或介导与特定模块化结构域结合的特征性序列基序。因此,一种在全蛋白质组范围内预测蛋白质相互作用的计算方法将包括从蛋白质一级序列数据中识别模块化结构域和序列基序,创建基于序列特异性的算法,以便在“相互作用空间”中将一种蛋白质中的一个结构域与另一种蛋白质中的一个基序连接起来,然后以图形方式构建可能的相互作用网络。预测蛋白质中模块化结构域的计算方法已经相当成功,但识别这些结构域所识别的短序列基序则更加困难。我们正在通过将实验和计算技术与序列和结合信息数据库相结合,开发改进的方法来识别这些基序。Scansite是一个可通过网络访问的程序,它利用来自肽库和噬菌体展示实验的实验性结合数据来预测蛋白质之间的相互作用。该程序专注于细胞信号传导中重要的结构域,但原则上,如果结构域和结合基序已知,它可用于其他相互作用。本章详细描述了如何使用Scansite预测输入蛋白质的结合伙伴,以及如何找到包含给定序列基序的所有蛋白质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验