Suppr超能文献

一种基于协变子的分子适应性检测方法:应用于灵长类动物线粒体基因组的进化研究

A covarion-based method for detecting molecular adaptation: application to the evolution of primate mitochondrial genomes.

作者信息

Pupko Tal, Galtier Nicolas

机构信息

The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu Minato-ku, Tokyo 106-8569, Japan.

出版信息

Proc Biol Sci. 2002 Jul 7;269(1498):1313-6. doi: 10.1098/rspb.2002.2025.

Abstract

A new method for detecting site-specific variation of evolutionary rate (the so-called covarion process) from protein sequence data is proposed. It involves comparing the maximum-likelihood estimates of the replacement rate of an amino acid site in distinct subtrees of a large tree. This approach allows detection of covarion at the gene or the amino acid levels. The method is applied to mammalian-mitochondrial-protein sequences. Significant covarion-like evolution is found in the (simian) primate lineage: some amino acid positions are fast-evolving (i.e. unconstrained) in non-primate mammals but slow-evolving (i.e. highly constrained) in primates, and some show the opposite pattern. Our results indicate that the mitochondrial genome of primates reached a new peak of the adaptive landscape through positive selection.

摘要

提出了一种从蛋白质序列数据中检测进化速率位点特异性变异(即所谓的共变过程)的新方法。该方法涉及比较大树不同子树中氨基酸位点替换率的最大似然估计值。这种方法能够在基因或氨基酸水平上检测共变。该方法应用于哺乳动物线粒体蛋白质序列。在(猿猴)灵长类谱系中发现了显著的类似共变的进化现象:一些氨基酸位置在非灵长类哺乳动物中进化迅速(即不受约束),而在灵长类动物中进化缓慢(即高度受限),还有一些则呈现相反的模式。我们的结果表明,灵长类动物的线粒体基因组通过正选择达到了适应景观的一个新高峰。

相似文献

2
Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks.
Proc Natl Acad Sci U S A. 1990 Sep;87(17):6703-7. doi: 10.1073/pnas.87.17.6703.
5
Phylogenetic analysis of genome rearrangements among five mammalian orders.
Mol Phylogenet Evol. 2012 Dec;65(3):871-82. doi: 10.1016/j.ympev.2012.08.008. Epub 2012 Aug 21.
7
Characterization and phylogenetic utility of the mammalian protamine p1 gene.
Mol Phylogenet Evol. 2002 Mar;22(3):333-41. doi: 10.1006/mpev.2001.1051.

引用本文的文献

1
A machine-learning-based alternative to phylogenetic bootstrap.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i208-i217. doi: 10.1093/bioinformatics/btae255.
2
Adaptive evolution and loss of a putative magnetoreceptor in passerines.
Proc Biol Sci. 2024 Feb 14;291(2016):20232308. doi: 10.1098/rspb.2023.2308. Epub 2024 Feb 7.
3
Next-generation development and application of codon model in evolution.
Front Genet. 2023 Jan 27;14:1091575. doi: 10.3389/fgene.2023.1091575. eCollection 2023.
6
Testing for natural selection in human exonic splicing regulators associated with evolutionary rate shifts.
J Mol Evol. 2013 Apr;76(4):228-39. doi: 10.1007/s00239-013-9555-2. Epub 2013 Mar 26.
8
Interchanging functionality among homologous elongation factors using signatures of heterotachy.
J Mol Evol. 2013 Feb;76(1-2):4-12. doi: 10.1007/s00239-013-9540-9. Epub 2013 Jan 31.
9
Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons.
Genome Res. 2012 Jan;22(1):35-50. doi: 10.1101/gr.119834.110. Epub 2011 Oct 5.
10
Statistics and truth in phylogenomics.
Mol Biol Evol. 2012 Feb;29(2):457-72. doi: 10.1093/molbev/msr202. Epub 2011 Aug 26.

本文引用的文献

1
Positive and negative selection on the human genome.
Genetics. 2001 Jul;158(3):1227-34. doi: 10.1093/genetics/158.3.1227.
2
Maximum-likelihood phylogenetic analysis under a covarion-like model.
Mol Biol Evol. 2001 May;18(5):866-73. doi: 10.1093/oxfordjournals.molbev.a003868.
3
Molecular phylogenetics and the origins of placental mammals.
Nature. 2001 Feb 1;409(6820):614-8. doi: 10.1038/35054550.
4
Parallel adaptive radiations in two major clades of placental mammals.
Nature. 2001 Feb 1;409(6820):610-4. doi: 10.1038/35054544.
6
Molecular evolution of aerobic energy metabolism in primates.
Mol Phylogenet Evol. 2001 Jan;18(1):26-36. doi: 10.1006/mpev.2000.0890.
7
Evolutionary rate acceleration of cytochrome c oxidase subunit I in simian primates.
J Mol Evol. 2000 Jun;50(6):562-8. doi: 10.1007/s002390010059.
8
Where do rodents fit? Evidence from the complete mitochondrial genome of Sciurus vulgaris.
Mol Biol Evol. 2000 Jun;17(6):979-83. doi: 10.1093/oxfordjournals.molbev.a026379.
9
Rapid evolution of male reproductive genes in the descent of man.
Nature. 2000 Jan 20;403(6767):304-9. doi: 10.1038/35002070.
10
The root of the tree of life in the light of the covarion model.
J Mol Evol. 1999 Oct;49(4):496-508. doi: 10.1007/pl00006572.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验