Byrdin Martin, Jordan Patrick, Krauss Norbert, Fromme Petra, Stehlik Dietmar, Schlodder Eberhard
Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany.
Biophys J. 2002 Jul;83(1):433-57. doi: 10.1016/S0006-3495(02)75181-3.
The structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus has been recently resolved by x-ray crystallography to 2.5-A resolution. Besides the reaction center, photosystem I consists also of a core antenna containing 90 chlorophyll and 22 carotenoid molecules. It is their function to harvest solar energy and to transfer this energy to the reaction center (RC) where the excitation energy is converted into a charge separated state. Methods of steady-state optical spectroscopy such as absorption, linear, and circular dichroism have been applied to obtain information on the spectral properties of the complex, whereas transient absorption and fluorescence studies reported in the literature provide information on the dynamics of the excitation energy transfer. On the basis of the structure, the spectral properties and the energy transfer kinetics are simultaneously modeled by application of excitonic coupling theory to reveal relationships between structure and function. A spectral assignment of the 96 chlorophylls is suggested that allows us to reproduce both optical spectra and transfer and emission spectra and lifetimes of the photosystem I complex from S. elongatus. The model calculation allowed to study the influence of the following parameters on the excited state dynamics: the orientation factor, the heterogeneous site energies, the modifications arising from excitonic coupling (redistribution of oscillator strength, energetic splitting, reorientation of transition dipoles), and presence or absence of the linker cluster chlorophylls between antenna and reaction center. For the Förster radius and the intrinsic primary charge separation rate, the following values have been obtained: R(0) = 7.8 nm and k(CS) = 0.9 ps(-1). Variations of these parameters indicate that the excited state dynamics is neither pure trap limited, nor pure transfer (to-the-trap) limited but seems to be rather balanced.
嗜热蓝细菌聚球藻的光系统I结构最近通过X射线晶体学解析到了2.5埃的分辨率。除了反应中心,光系统I还由一个包含90个叶绿素和22个类胡萝卜素分子的核心天线组成。其功能是收集太阳能并将能量传递到反应中心(RC),在那里激发能被转化为电荷分离状态。稳态光谱学方法,如吸收光谱、线性和圆二色光谱,已被用于获取该复合物光谱特性的信息,而文献中报道的瞬态吸收和荧光研究则提供了激发能转移动力学的信息。基于该结构,通过应用激子耦合理论对光谱特性和能量转移动力学进行同时建模,以揭示结构与功能之间的关系。提出了96个叶绿素的光谱归属,这使我们能够重现聚球藻光系统I复合物的光谱、转移光谱、发射光谱以及寿命。模型计算能够研究以下参数对激发态动力学的影响:取向因子、异质位点能量、激子耦合引起的变化(振子强度的重新分布、能量分裂、跃迁偶极矩的重新取向)以及天线与反应中心之间连接簇叶绿素的存在与否。对于福斯特半径和固有初级电荷分离速率,得到了以下值:R(0)=7.8纳米,k(CS)=0.9皮秒(-1)。这些参数的变化表明,激发态动力学既不是纯粹的陷阱限制,也不是纯粹的转移(到陷阱)限制,而是似乎相当平衡。