Suppr超能文献

Structural determination of spin label immobilization and orientation: a Monte Carlo minimization approach.

作者信息

Sale Ken, Sár Cecília, Sharp Kim A, Hideg Kálmán, Fajer Peter G

机构信息

The National High Magnetic Field Laboratory, Institute of Molecular Biophysics, and Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA.

出版信息

J Magn Reson. 2002 May;156(1):104-12. doi: 10.1006/jmre.2002.2529.

Abstract

Electron paramagnetic resonance (EPR) is often used in the study of the orientation and dynamics of proteins. However, there are two major obstacles in the interpretation of EPR signals: (a) most spin labels are not fully immobilized by the protein, hence it is difficult to distinguish the mobility of the label with respect to the protein from the reorientation of the protein itself; (b) even in cases where the label is fully immobilized its orientation with respect to the protein is not known, which prevents interpretation of probe reorientation in terms of protein reorientation. We have developed a computational strategy for determining whether or not a spin label is immobilized and, if immobilized, predicting its conformation within the protein. The method uses a Monte Carlo minimization algorithm to search the conformational space of labels within known atomic level structures of proteins. To validate the method a series of spin labels of varying size and geometry were docked to sites on the myosin head catalytic and regulatory domains. The predicted immobilization and conformation compared well with the experimentally determined mobility and orientation of the label. Thus, probes can now be targeted to report on various modes of molecular dynamics: immobilized probes to report on protein backbone and domain dynamics or floppy probes to report on the extent of steric restriction experienced by the side chain.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验